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Chapter 1

ESTIMATING WATER POLLUTION CONTROL BENEFITS USING
PARTICIPATION MODELS: EXECUTIVE SUMMARY

The research summarized in this report was conducted for the U.S.

Environmental Protection Agency in support of that agency’s efforts to

comply with the requirements of President Reagan’s Executive Order 12291 of

February 1981. That order made cost-benefit analysis of proposed major

regulatory decisions mandatory, even when that analysis could not, by law,

be the basis for actual decisions. Where environmental regulations are in

question, the techniques and databases necessary to successful cost-benefit

analysis are still far from sufficiently developed to support routine

applications. Accordingly, the Office of Policy Analysis within EPA has

supported research with the dual goal of developing data and methods and of

generating actual benefit estimates.

The specific charge for this study was to develop methods for

estimating the benefits of water pollution control as they accrue to

society through effects on participation of individuals in swimming (in

natural water bodies), recreational boating, and recreational fishing in

Great Lakes and marine water of the United States. This particular

combination of activities was chosen as representing the major promising

extensions to the work done in an earlier project on the benefits accruing

via freshwater recreational fishing. (Vaughan and Russell, 1982).

To put the effort in perspective, it is worth reviewing the benefit

estimates collected and critically reviewed by Freeman (1982). In table

9.1 (p. 170) Freeman gives as his “most likely point estimate” for total

annual water pollution control benefits (1978 dollars) $9.4 billion.
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Almost half this total ($4.6 billion) he estimates in chapter 8 to be

accounted for by “Recreation”. This broad category he in turn has broken

down into five subcategories: freshwater fishing, marine sports fishing,

boating, swimming and waterfowl hunting. The last category accounts for a

tiny percentage (about 2 percent) of the $4.6 billion total. Swimming and

the two types of fishing are estimated to account for about 22 percent each

(about $1.0 billion per year), while boating is estimated to account for

almost 33 percent (or $1.5 billion). Thus, if successful, a project

providing improved benefit estimates and methods for future estimation

exercises for fishing, boating, and swimming would enhance EPA’s ability to

deal with a substantial fraction of the currently estimated total benefits

to be expected from the ongoing U.S. program of water pollution control.

We believe that overall the project has been successful. As will be

documented below, substantial progress has been made in clarifying the

promise and problems inherent in the traditional participation method for

dealing with recreation decisions. Further, a very different method for

producing benefit estimates has been adapted to the peculiarities of the

available data on boating participation. The application of the

traditional methods to the fishing and swimming activity categories was,

however, only partially successful. The lesson we draw from partial

success is, however, of some importance in its own right, for it points to

some fundamental data gaps that must be filled before benefit estimation in

these areas can be really successful, let alone a routine operation for a

regulatory agency.

The remainder of this chapter is devoted to a general introduction to

conceptual problems and opportunities with the participation method, and to

an anticipatory summary of major results. This will set the stage for
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chapters dealing with each of the conceptual problems in more detail

(2,3,4); and chapters describing applications to fishing (5,6,7), and

swimming (8.9). In chapters 10 and 11, a different technique is explored

in estimating benefits accruing via boating. Here the focus is on

ownership decisions (of the necessary capital good, the boat) rather than

on activity decisions about days of boating. This method has much to

recommend it where the data are available to support it. A concluding

chapter pulls together the important conclusions and re-emphasizes the

implications for future research.

PROBLEMS WITH PARTICIPATION ANALYSIS AS THE BASIS FOR BENEFIT ESTIMATION

For more than two decades, applied economic models of consumer

recreation decisions have proceeded along two parallel tracks, the

parallelism seemingly dictated by the nature of the data available for

model estimation (Cicchetti, Fisher and Smith 1973).

The “macro” track has been characterized by the recreation

participation equation approach. It involves an attempt to estimate a

relationship explaining the pattern and intensity of individual

participation in specific recreational activities at a national or regional

level of spatial analysis, regardless of the places (sites) where the

activities took place. The “micro” track, in contrast, is characterized by

travel cost models attempting to econometrically capture the demand

relationship for the services of a single known site or group of sites.

While both the “macro” and “micro” approaches appear to stand on firm

theoretical foundations, those foundations were not build independently of

the way data on recreation happens to be collected. The data for

estimating the “macro” relations comes from large cross-sectional
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population surveys containing information on the socio-economic

characteristics of the respondents, leisure activities in which they

engaged (if any), and their intensity of participation in these activities

over a specified time span (for example, see U.S.D.I n.d.). Such

population surveys generally contain minimal information on where the

respondents recreated or could have recreated. Consequently, analysts have

no information on the vector of individual-specific travel costs indexed by

activity category and site (which are analogous to goods prices in models

of consumer demand for marketed goods as discussed by Wennergren 1967)

associated with enjoying the several activity categories surveyed. Thus,

elaborate theoretical reasoning has been brought to bear simply to explain.

why such price-type data is not needed in model estimation.

This lack of precise individual-specific price data, along with a

focus on activities rather than sites, and the collection of information on

non-participants as well as participants are the features distinguishing

the "macro" approach from the site-specific travel cost method (Cicchetti,

Fisher and Smith 1973). They are also the features which, unfortunately,

have confounded our understanding of just what the macro model represents -

a structural demand equation or a reduced form - and have rendered welfare

analysis with it extremely tenuous.

The study reported here focussed on three questions central to the

application of the macro or participation techniques to the estimation of

benefits of a policy change. First, what is the place in the models of

measures of availability or quality of the relevant resource (fishable

water to participation in fishing). Such measures are necessary to the

reflection of the results of policy and hence to prediction of post-policy.

participation, which are in turn the basis for benefit estimates. It is
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therefore not surprising that measures of availability do appear in

participation. What they are doing there is another matter.

Second, it is necessary to look carefully at how participation

equations are actually estimated given the special nature of the data

available on consumer choices. Thus, in the last decade or so, estimation

of microeconomic models of consumer behavior using large individual- or

household-level data sets has flourished and proven an important advance in

applied economics. Details typically masked in aggregate time-series data

analysis are often available in individual cross-sectional data, thus

allowing the testing of hypotheses about responses of individual or

household demand-supply bundle choices to changes in constraints.

It is in such micro datasets that one tends to find measures of

demands and supplies that economists would characterize either as corner

solution realizations of instantaneous optimizing decisions or as discrete

representations of such decisions. An example of the former case would be

where one has data on the number of hours an individual worked in the

market over a given year, and for some subset of individuals no market

hours were worked. An instance of the latter case, is where data are

available only on whether or not an individual had purchased some consumer

durable over the previous twelve months, but not on the amount of the

expenditure. Assuming the statistical models determining labor supply and

durables demand to be the objectives of estimation, then the former is an

example of what have come to be known as limited dependent variable (LDV)

models, while the latter is a member of the class of qualitative dependent

variable (QDV) models. Tobin’s pioneering 1958 paper on durables demand is

the forerunner of LDV estimation in economics. Using data on 735 micro

spending units, Tobin modeled the ratio of durables expenditures to
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disposable income; for 183 of these spending units, no durables were

purchased during the time period of interest and a “corner solution” had to

be treated. The solution to this problem was the genesis of the Tobit

estimator, which will be discussed below in chapter 4. Note that had Tobin

only data on whether or not there was some durable purchased rather than on

the actual amount, a QDV model (such as binary probit or logit) would have

been the appropriate approach.

In recreation participation modeling, owing to the nature of the

available micro data, standard econometric techniques such as ordinary

least squares (OLS) will typically be inappropriate tools for the analysis

of recreation participation. The available data on participation

decisions, rather, are usually qualitative or limited dependent variables,

and more complicated estimation techniques are in general required in order

to obtain consistent estimates of the parameters governing the

participation outcomes. Maximum likelihood is the estimation method most

commonly used in such analysis.

In previous empirical analyses of recreation participation (Vaughan

and Russell (1982)), efforts were focused less on the subtleties of the

statistical and econometric methods used than on the development of a

unified framework for assessing empirically the effects of water quality

changes on participation. As such, the analysis was restricted to those

econometric methods that were less resource-consuming than is true of many

of the more sophisticated iterative maximum likelihood techniques to be

described below in chapter 4. This strategy was followed consciously,

though at the expense of the possible inconsistencies resulting from

ignoring such subtleties. In the present endeavor, emphasis is shifted to

an evaluation of the implications of certain characteristics of the
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participation measures (e.g., nonnegativity of some measures, discrete or

grouped measures) for estimation strategy and, as a consequence, for

benefit estimation.

The third question to ask of the participation method is, How, if at

all, can we obtain dollar values from it. The “micro” travel cost model,

being a structural representation of a single demand function or a demand

system can be employed directly to produce site values. It can also be

used to assess the welfare change occasioned by adding or deleting a site

from a pre-specified system of sites, or to answer other welfare-related

questions, such as the benefits of upgrading site quality, as well. Its

primary limitation is an arbitrary definition of the scope of the problem,

specifically the identification of a subsystem of sites which can

reasonably be modeled without omitting relevant substitutes.

The participation equation “macro” model begs this question by

ignoring sites per se. But, since prices do not appear as independent

variables in the model specification - due primarily to data deficiencies

in our view - direct welfare analysis with such models would seem to be

impossible. But the macro models are used, in an indirect way, for welfare

analysis. Indeed, their primary practical purpose has been the prediction

of changes in participation levels over time or across space under

alternative hypothetical public policies directed toward the supply of

recreational resources. These changes, and hence the policies engendering

them, are usually valued using a unit value which Freeman 1982 graciously

refers to as an “activity shadow price”. The monetary welfare measures

assigned to the possible policy alternatives are then obtained as the

product of the predicted change in days of participation, summed over the

population, and the unit value. (See Freeman 1982 for a catalog of several
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such studies, including one by the authors of this paper. Researchers with

the perspicacity not to assign a dollar value to projected participation

changes include Hay and McConnell 1979.)

To those familiar with the site-specific travel cost approach, the

unit day value method may seem no more than an irrelevant curiosum, but in

fact its use is commonplace. It is a practice that was recommended, until

recently, by the Water Resources Council and was cited recently as an

alternative when other methods were not available (WRC 1979). It has been

used to value an entire recreational fishery in British Columbia (Pearce

Bowden 1971), and to estimate the recreational benefits of the Illinois

river in Oklahoma under the Wild and Scenic rivers Act (U.S. Department of

the Interior 1979). Other agencies, including the Corps of Engineers,

continue to use this method. Moreover, the Forest Service, in responding

to requirements of the multiple use and sustained yield legislation has

incorporated the equivalent of unit day values in their programming models

(Sorg, et. al., 1984). Finally, the method has found frequent application

in analyses of the national recreation benefits of water pollution control

programs, as catalogued by Freeman 1982.

The unit day value approach to obtaining the welfare effects of a

policy change is particularly convenient when no information other than a

prediction of a policy’s impact on days of participation is available from

a macro participation model. But, there are three problems with the

"macro" modeling approach: differential site quality characteristics are

not accounted for; prices are often omitted in estimation; and unit values

are employed to monetize predicted quantity changes. The first two

problems lead to biased predictions of quantity change while the first and

third distort the estimate of welfare change, even if the quantity
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predictions are accurate. Only rarely are these limitations acknowledged

(an exception is Sorg, et. al., 1984).

AN EXPERIMENT WITH A MORE DIRECT METHOD: THE CASE OF RECREATIONAL BOATING

The conventional participation equation method of estimating the

recreational benefits of water quality improvement policies focuses on the

changes the probability and intensity of leisure activity participation

occasioned by the prospective policies. Since, for many such activities,

lumpy expenditures for activity-specific consumer durables are not a

prerequisite for participation, their role is ignored in both theoretical

model development and econometric estimation. Instead, trip cost or a

proxy thereto plays a paramount role (See chapter 2 and Vaughan and

Russell, 1984).

There are two compelling reasons why the standard participation

equation method may not be the best approach to the investigation of the

benefits of water quality improvement accruing to activities such as

recreational boating. One is theoretical and one purely data-related.

First, boating obviously requires a boat, which can either be rented or

owned. It also requires an environmental service, boatable quality water.

So, from the theoretical side, these obvious relationships suggest that

Mailer’s notion of weak complementarity (M3ler 1974, pp. 131-139) between an

indivisible private good (the boat durable) and a public good (boatable

quality water), can usefully be employed. The notion implies that a

portion of benefits of a change in water quality can be identified via the

estimation of the demand relation for the private good, the boat durable,

which itself depends on the level of provision of the public good. This is

the portion of the total benefit accruing to new entrants to boat
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recreation, assuming standard operating year participation levels. It is

estimated in chapter 10. The remaining portion of the benefits, that which

accrues to existing boat owners who participate more intensively, is

estimated in chapter 11.

In this connection the consumer can be regarded as having a direct

utility function defined over discrete durable goods, a numeraire composite

commodity, and the service flows from the durable, if it is owned. In the

boating case, the service flow can be proxied by the number of boating

trips enjoyed over the year. We choose to model this problem in two steps

(for a more sophisticated treatment see Hanemann 1984). In the first step

the discrete ownership probabilities for various boat types are

econometrically modeled via conditional logit. In the second step the

demand for the continuous quantity, boat trips, conditional on ownership,

is modeled via regression analysis, under the assumption that the

conditional density (conditional in the sense that boat ownership is

chosen) of the positive realizations is log normal. The procedure is

analogous to one variant of the class of hurdles models discussed in Cragg

1971 and chapter 4 below. It departs from the unified treatment in

Hanemann 1984 in the sense that the estimating equation for the continuous

choice is not derived from an underlying theoretical utility maximization

model, although the discrete choice model is. Rather, the continuous

quantity equation estimated in our second step is best regarded as an

approximation. The practical significance of this shortcut is that an

overall compensating variation measure of welfare change associated with

more boat ownership and more trips due to pollution control cannot be

obtained. Rather, while a compensating variation measure is available for

the first benefit component, we must settle for an ordinary Marshallian
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surplus for the second. (For an example of how to get a theoretically

consistent compensating variation welfare measure out of a

discrete/continuous utility model once all utility function parameters are

statistically estimated see Hanemann 1982a.)

But, before becoming involved with the details of discrete choice

modeling, another important consideration should be raised. This is the

nature of the available data. As noted above, participation-type models

require detailed information on individuals, both in terms of the choices

they made and their characteristics. Unfortunately, the best source of

data on boating, the 1976 Coast Guard Nationwide Boating Survey, contains

almost none of the information required by the participation equation

approach. Particularly, the absence of good socioeconomic data on

respondents, (especially non-owners) rules out the application of the

participation equation method to the Coast Guard Survey data. But, the

survey’s detailed information on boat ownership by type of boat and

category of recreational use, number of boat outings per household, and

trailer miles per outing, make it an attractive source of data which, when

supplemented by independent information on boat costs, can be put to use in

estimating a model of discrete (durable goods) demand, and a continuous

model of trip demand conditional on boat ownership. Thus, both theory and

practical necessity drive toward this experiment.

ANTICIPATING THE RESULTS

The results produced by the several subprojects briefly described

above are of interest principally because they challenge what has become

the conventional wisdom in this area, the numbers pulled together and

critiqued by Freeman 1982. anticipating the summary and comparisons to be
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final chapter of this report, we can say that every benefit

here is lower than the corresponding number in Freeman’s

key table, after the latter are adjusted to 1983 prices by the Consumer

Price Index. Indeed, all but one of our numbers -- the lower limit of our

Great Lakes and marine fishing benefits -- are lower in 1983 terms than

Freeman’s 1978 dollar figures.

How much lower? for all the activities dealt with in this report,

quite substantially. comparing most likely point estimates, we find the

highest relative RFF number to be 30 percent of Freeman’s Great Lakes and

marine recreational fishing.

together, is only five percent

table 1.1).

One must, of course, treat

The lowest, for boating and swimming

of Freeman’s corresponding figure. (See

all the numbers in these comparisons with

great caution. Freeman has outlined the problems in the earlier studies he

has synthesized. The chapters of this report will emphasize the

difficulties and uncertainties that plague our work. It is worth saying

for a first time here, however, that the major problem is with data. Most

fundamentally, it is impossible to find comprehensive water quality data

for the pre-pollution-control situation of the basis of which participation

or other relations can be estimated. The data that are available are not

comprehensive in geographic coverage, consistent in quality and coverage of

particular pollutants, and for the most part do not include parameters that

can reasonably be hypothesized to enter into recreationist’s views of

availability of water resources for their activity decisions. For example,

systematic work on swimming benefits requires data on the extent of

pollution relevant to swimming, such as turbidity and micro organism

counts. These pieces must be available comprehensively enough that we can
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Table 1.1. RFF and Freeman Benefit Estimates Compared
(109 dollars, 1983, per year)

RFF Freeman
RFF as % of
Freeman

Freshwater Fishing

Marine & Great Lakes
Fishing

Boating 0.2c

Swimming 0d

Boating and
Swimming 0.2

0.9a 1.5 60

0.4b 1.5 30

NA 2.3 9

NA 1.5 nmf

0.01e 3.8

Totals 1.5 1.3 6.8

(5)(0)

(39(19)

n.m.f. = no meaningful figure.

Notes:

a. From Vaughan and Russell 1982 with correction to 1983 using the CPI.

b. From chapter 7 below.

c. From chapter 11 below; using the complementary good method.

d. From chapter 9 below; a generous interpretation of the results for
swimming alone in table 9.26.

e. From chapter 9 below; the mean of the overall benefit estimates in
table 9.26.

f. From Freeman 1982.
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characterize the reduction in availability of swimmable water due to

pollution at the level of the state or, preferably, the county. They are

not now available in anything like that detail.

The estimates produced in this report depend not on such comprehensive

objective data, but rather on the largely subjective characterizations

reported to us by responsible state officials. While these are at least

reasonably comprehensive (See appendix C to chapter 5) the nature of the

survey process that produced them, must give us pause in their

interpretation.

Still, these survey numbers are arguably more to the point than the

characterizations lying behind the earlier studies, and it seems reasonable

to think that conventional wisdom about the likely size of

participation-based benefits is due for readjustment. This is not to say

anything about the so-called intrinsic beneits being sought in other

EPA-supported projects.

PLAN OF THE BOOK

The reader whose major or only interest is in the benefit measures

just briefly discussed is invited to skip ahead at this point to chapter

12, the final chapter, where the numbers are summarized. Those readers who

have some interest in methodological issues per se will want to begin at

the beginning, with chapters 2 through 4. These cover, respectively the

role of recreation resource availability variables in participation

analysis; the pitfalls of two-step (probability/intensity) estimation of

participation - based benefits; and some of the more recent developments in

estimation techniques for models using qualitative, truncated or censored

dependent variables.
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Subsequent to these general methodological discussions we have three

major sections in which the specifics of data and method are presented for

marine and Great Lakes recreational fishing, swimming (in natural water

bodies but not disaggregated by type of water) and recreational boating

(also not divided into fresh and saltwater) respectively. The chapters

involved are:

fishing: 5-7

swimming: 8,9

boating: 10,11

The final chapter, as indicated above, provides a summary of the

benefit estimates.
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NOTES

1. This discussion abstracts from conceptual problems of doing any cost

benefit analysis for certain kinds of proposed regulations. For example,

where the effects of the regulation apply specifically to the discharge of

one industry. The benefits can only be determined by making arbitrary

assumptions about what is happening to other industries. This is because

individual plants occur in multi-industry regions rather than in

single-industry clumps.
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Chapter 2

THE ROLE OF RECREATION RESOURCE AVAILABILITY VARIABLES
IN PARTICIPATION ANALYSIS*

Suppose a decision on providing or not providing some general addition

to recreation resources hinges on what impact the addition is projected to

have on participation in the activities to which they are relevant. For

example, suppose a decision about expanding camping areas across the U.S.

is to be made on the basis of the projected addition to camping activity

attributable to the addition of resources. This problem setting allows us

to postpone until later consideration of the problems of valuation within

the participation model context.

To address the problem a cross-sectional data set reflecting individual

leisure-time pursuits and the socio-economic characteristics of the same

individuals is required, so that population leisure participation can be

estimated econometrically as a function of these characteristics, as in

Settle (1980). It also seems necessary to have variables measuring the

supply of recreation resources appear as arguments in the equations to be

estimated, so that the effect of alterations in supply can be appraised

directly. But, a question arises at this point: Do such supply variables

belong in recreation participation equations, in the sense that the

equation specification is consistent with economic theory?

A hint of the answer is given by the travel-destination/modal-choice

literature, where relevant independent variables in the empirical model of

choice are the variables that would appear in the consumer’s indirect

utility function--for example travel cost (analogous to goods prices), site

*A version of this chapter has been published in The Journal of
Environmental Management, vol. 19, 1984, pp. 185-196.
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attributes, consumer income and consumer characteristics (Hensher and

Johnson 1981, Rugg 1973, Small and Rosen 1981). Unfortunately, few, if

any, recreation participation surveys from a broad sample of the population

contain detailed individual-specific information on travel and other costs

incurred in going from place of residence to the recreation site or sites

chosen, let alone other potential sites not chosen. Nor do the surveys

normally identify the location of individuals or sites at all precisely.

Thus, if a correctly specified recreation participation equation is to be

estimated econometrically from such survey data, a proxy variable must be

developed which can stand in, however crudely, for the expected site prices

associated with an individual’s participation in one or more recreational

activities. Fortunately, this variable is indeed a resource supply

variable.

Previous empirical analyses of population recreation participation in

broad activity categories (rather than site-specific travel cost studies)

have either employed a measure of average variable travel cost consistent

with theory (Ziemer and Musser 1979; Ziemer, et. al., 1982) or, when such

measures were unavailable from survey data, substituted aggregate "supply"

variables as proxies (Davidson, Adams and Seneca 1966; Chicchetti 1973;

Deyak and Smith 1978; Smith and Munley 1978; Hay and McConnell 1979;

Vaughan and Russell 1982) or even ignored the problem entirely (Settle

1980). The rationale for such proxy recreation resource supply variables

has generally been vaguely asserted rather than clearly established. Yet

it makes intutitive sense to link participation to the “availability” of

recreation alternatives measured in terms of quantity (number of facilities

in a geographic region) or quality (number of facilities per capita to

account for congestion) (Cicchetti, Fisher and Smith 1973). In fact, it is
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possible to go beyond intuition and provide a firm rationale for the

inclusion of explanatory physical supply quantity variables in recreation

participation equations. We do so below, using the case of a water-based

recreation activity (eg. fishing).

A version of the theory of distance estimators of density (or in our

case density estimators of distance) developed in the statistical ecology

literature can be applied to show that expected travel cost should be

functionally related to the number of water bodies per unit land area in a

region.

RELATING DENSITY AND DISTANCE

The idea behind this link is intuitively appealing, the more objects

there are randomly arranged in a given space, the closer will be the

nearest such object on average, to any randomly chosen point. If we knew

the parameters of the process that put the objects in their places, we

could obtain an exact expression for the expected distance. However, we

will usually not know either the exact process behind the location or the

parameter appropriate to an approximate process. In those circumstances,

which characterize the analyst looking at actual water bodies in regions

and wondering about a proxy for travel cost, observed density of the bodies

may be used either directly or after transformation as a proxy for expected

distance.

To tie down the intuitive idea with a bit more rigor, assume that a

region can be divided into N equal-size squares. These squares will be

taken to be units. Some number, n of “tiles” representing water bodies and

also of unit size, will be placed on the grid by a random process such that

the probability of a “tile” falling on a square is 1/N=P. More than one
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tile can land on a square, so that after all tiles have been placed, the

observed number of “lakes” will be w&n. If N is large (p small) the

resulting probabilities of a particular number, m, of tiles falling on any

chosen grid square can be approximated by the Poisson density function:

The expected number of water bodies, allowing for multiple tiles per

square, is N(1-e-np) = w. Because e-np can be approximated by the first

few terms of the series

and because np = n/N <1 by assumption, it is also true that w/N, the

observed density of lakes, is an approximation for np, the Poisson

parameter (often written as A).

Thus, w/N = 1-e-np = 1-(1-np) = np = n/N

This approximation result is important when the objects on a grid may

be assumed to have been distributed according to a Poisson density function

with parameter Xi Then it is possible to show that the expected distance

E(r) from a randomly chosen point to the nearest such object is given by

E(r) = ]>2rrAe‘Xnr2d,

= [;Znbr ‘eMXTr 2dr

The derivation of this expected distance formula is reasonably

straightforward. By the Poisson distribution the probability of no objects

in a circle of radius r is:

P( Am2 = 0) = e
-XTlr2
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If the nearest object appears at distance r from the center of this circle,

we can define an annular ring of width dr within which it is the only such

object. The area of the annular ring is

T(r + dr)2 - Trz = n(r2 + 2rdr + dr2 - r 2 )

= r(2rdr + dr2)

Ignoring terms in (dr )2 we can approximate the probability that the band

contains the one object by

e- X2nr dr
(2nrXdr) '/l !

using the reasoning developed above. Note, however, that

-x ~xe =

Since x = X2nrdr, and ignoring terms of order 2 and higher in dr, we have

2Trdr Ae-2rrdrX : 2TrdrX

If the two events (no objects within the area rr2; one object within

the annular ring with area are assumed to be independent

their joint probability is the product of their individual probabilities.

Thus the joint probability density function of distance r is the product of

the Poisson probability expressions for finding zero objects out to r and 1

object in the narrow band at r

f(r) = 2nrXe-Xnr2dr

Thus, the expected value of r, or of the average distance to the nearest

object from random points in the space, as a function of the density
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parameter is:

0)
E(r) = I r 2rrXeWXTrz  dr = i 2vAr2e -Anr2dr

0 6

This definite integral can be shown to produce:

E(r) = $- ),
-1/2

which is to say that the expected distance from a randomly chosen point to

the nearest object depends on the Poisson parameter. Thus, if we can

approximate A by w/N, we can approximate E(r) by 1/2(w/N)-1/2 so that

expected distance falls with increasing density: This relation is shown in

figure 2.1.

The variance in expected distance (VAR r) can be obtained by

recognizing (Larsen and Marx 1981, p. 114) that VAR(r) equals E(r2) -

(E(r))2. The expected value of r is already known to be 0.5h-” 5 so the

second

obtain

E

term in VAR(r) is this quantity squared, equal to 0.25X-1. To

the expected value of r2, we take the definite integral:

r2) = 2TA~r~e(-ATr2)dr
0

= 2lii r(2) 2nA 7
2z = ‘2Kiy = xsr

So,

Var (r) = 7+- $-

Putting this expression in terms of a common denominator and

simplifying

(4-T)VAR(r) = 4nX g o.o68h-‘.
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Figure 2-1. The Density Distance Relationship
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and the variance of the expected distance also falls with density.

While these relations have both intuitive appeal and formal

justification, there are several possible pitfalls associated with using a

measure of the density of water bodies (acres per acre) in the region of

interest as an inverse proxy for distance and hence travel cost.

First, the relation between measured density as a point estimate of

expected density and X is better the smaller A. This may be seen by

inspecting the series approximation for e-np given above. The smaller n

relative to N the more rapidly the terms with exponents greater than one

approach zero. Thus, the

the approximation.

Second, in the real

area pieces, or indeed as

let alone across several

more richly endowed the region the less reliable

world water bodies do not come as discrete unit

pieces of any common size across a single region

regions. Thus, the assumptions underlying the

derivation will be violated in actual regions. Particularly, data on

surface acreage (rather than the number of lakes) is the most common

measure of the availability of water for recreation, and surface acreage is

composed of lakes of varying sizes as well as rivers and streams. So the

Poisson forest analogy does not translate perfectly in application.
A

To see the problem let A, measured as the square miles covered by the

objects (lakes) per square mile of regional surface area, be the available

data. Suppose that all objects have the same size, m, so that X (number of
A

units) = X/m. Then,

E(r) = 0.5h-0.5 = 0.5 (i/m)-0.5 = ~I,s~-~~5~mO~5~
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So, if m is constant across regions, h can be used as a proxy for X as an

explanatory variable in estimating activity participation relationships,

since the constant term will merely scale the estimated availability

parameter. A plausible assumption is that large lakes are composed of

clusters of equal radii objects, so proportionality between X and X is

maintained. It is however, implausible to think that m will be constant

across regions; and finding a set of region specific average is neither

practically non-theoretically appealing.

Third, even if the objects of interest are of uniform size across the

regions, but their locations were generated by a heterogenous, nonrandom

process rather than a homogenous Poisson process (i.e., the objects’

centers were not uniformly and independently distributed) the expected

distance formula will not hold (Ripley 1981, Ch 7, 8).

Finally, if the intensity parameter varies from place to place but the

manner in which it varies is unknown a priori, spatial groupings cannot be

established which uniquely reflect the variation in the several population

h’s associated with the different regions. All one can do is to produce

different area-weighted mean density proxy measures for X for different

levels of aggregation across space.

For example, in a 100 by 100 grid, we generated two samples with 400

objects (X = .04) and two samples with 200 objects (X = .02). The distance

to the nearest object was computed from 81 points systematically located at

the intersection of lines of latitude and longitude ten units apart.

(Border intersections were excluded). The expected value of distance to

the nearest object is 2.5 miles for X = .04 and 3.54 miles for EC =.02. The

sample outcomes for expected distance and the associated standard errors of

the means from this simple experiment show that in these cases the sample
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means are all within one standard error of the population expectation given

by

A = .02 x = .04

Sample 1 Sample 2 Sample 1 Sample 2

Sample Mean
Distance 3.38 3.61 2.41 2.59

Std Error of Mean 0.19 0.20 0.16 0.13

Theoretically
Expected Distance 3.54 2.50

Note, however, that if we were to sample over both grids believing

that both belonged to the same population (i.e., shared the same X) our

estimate of X would be (200 + 400)/2(10,000) or 0.03 and our expected

distance would be 2.89. Although this expected distance would perhaps be

realistic for individuals located on or around the border delineating the

regions (particularly the geographic centroid of the two regions together)

it would not be for individuals located some distance from that border, who

more properly should be assigned their respective region - specific

expected distances.

SOME IMPLICATIONS FOR AGGREGATION: MEASURING THE PROXY FOR X

With aggregate real world data we do not pick a set of random points in

space and mark off the distance from each of those points to the closest

"object" (i.e., water body), to estimate a value for X from the inverse of

expected distance formula. Rather we use acres of objects per acre of

total area as a proxy for X and hence for expected distance. The question

is how to demarcate the relevant boundaries of total regional areas?

Counties, combinations of counties, or fixed areas around each individual
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could be used, but the cutoff distance over which our proxy for h should be

measured is unknown.1

However, a University of Kentucky Water Resources Institute survey

(Bianchi, 1969) of over 3,000 fisherman reported that only slightly more

than 8 percent travelled over 30 miles to fish. Similar calculations of

the percent of days fishing by travel distance can be made from U.S.

Department of the Interior, 1982:

One-Way
Distance
(miles)

0-5
6-24

25-49
50-99

100-249
250-499
500-999

>1000

Frequency
(%)

19
25
17
14
10
3
1

Nil

The median travel distance from this data is 32 miles. The Davies

test of skewness (Langley 1970) suggests this data is approximately

logarithmic in distribution, so the geometric mean is appropriate, yielding

a value of 31.6 miles. It also appears that 250 miles would be a generous

upper limit for the radius of the region whose characteristics determine

recreationist behavior. Two alternatives, then, suggest themselves. One

is to use density data only from an individual’s county of residence. At

the other extreme, circular regions around the centroid of the individual’s

county of residence could be constructed and weighted density data from all

the counties represented in this region used to construct a measure of
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CONCLUSION

It is appropriate to include two "availability" variables in the

econometric analysis of recreation participation choice; one to capture the

distance or travel cost influence via the number (or acres) of recreational

resource facilities per unit land area and one to capture the (expected)

congestion influence via the number (or acres) of such facilities per

capita.

Further, it is reasonable to maintain that individuals base their

recreation participation decisions on expected (travel-cost based) prices

across the gamut of alternative types of recreation activities rather than

actual prices, since the latter cannot always be known with certainty for a

broad array of activities. In this case availability variables are hot

just proxies introducing errors-in-variables problems into the econometric

analysis (Maddala 1977, Ch. 13). Rather, these observed variables are the

true price variables which we desire to measure based on the theoretical

model. In this context errors-in-variables problems would occur only if

the degree of spatial aggregation involved in constructing a measure of A

was too coarse, encompassing several areas which belonged to separate

populations, each with its own particular X. In such a situation it is

likely that the estimated parameter reflecting the relationship between

participation and average availability will be a biased measure of the true

effect.
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NOTES

1. For further discussion and numerical illustrations relevant to this

aggregation problem, see Vaughan. et. al., 1985.
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Chapter 3

TWO STEP ESTIMATION OF PARTICIPATION BENEFITS

This chapter focuses on two problems with bifurcating the estimation

of the benefits of recreational resource enhancement into two unrelated

steps - quantity change and valuation. Throughout we assume the absence of

systematic error in predicting participation change, though such errors can

either offset or compound the error attributable to assigning an average

unit value to that change. The discussion is confined to macro

participation models of the aggregate level of recreation activity service

flow enjoyed at an (unknown) site or set of sites, rather than travel cost

models of the demand for the services of a site or system of sites, because

in the latter case the ability to estimate demand functions obviates the

need for unit values.

After a brief review of the genesis of the two-step method the

valuation problem and the theoretical background engendering it is

addressed. Subsequently it is shown that the two-step valuation method is

questionable on theoretical grounds and not likely to provide a reasonably

accurate monetary measure of the welfare change associated with

participation quantity change stimulated by a policy of recreation resource

augmentation. Some numerical examples are provided which confirm the

theoretical results.

ORIGINS OF THE TWO-STEP METHOD OF VALUATION

Traditionally, data on the regionally differentiated availability of

recreational resources (acreage or number of lakes, campgrounds, natural

forests, etc., contained in some geographic region, often the state) has
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been obtained to supplement the data in population recreation surveys and

included among the set of relevant regressors in the macro participation

model specification. Inclusion of these variables has some basis in common

sense, as it is intuitively appealing to anticipate that recreation

resource availability variables must have sane role to play in influencing

recreation participation and intensity. One would expect individuals

living in a region amply endowed with freshwater to

engage in water sports, and do them more often over

paribus, than individuals living in a poorly endowed

important, inclusion of such availability regressors

absolutely necessary if it is to be a useful tool

be more likely to

the year, ceteris

region. But more

in the model is

for evaluation of

potential broad policies of supply alteration. If there are no supply

variables in the participation equation, participation will not be

predicted to change when supply changes, and the policy will appear to have

no impact the analyst can value.

Initially, the inclusion of quantity-type availability variables in

macro models was theoretically justified by somewnat vague allusions to

"supply" factors (Cicchetti 1973), although it was never clear what sort of

a supply function was implied. Later, to help dispel the confusion, Deyak

and Smith (1978) invoked household production theory to explain supply in

terms of the household’s marginal cost for “producing” recreational service

flows. Marginal cost itself for these authors was a function of

“characteristics” variables, which happened to be physical availability

variables in disguise, represented as facilities per capita, a measure of

expected congestion. The consequence of this paradigm was the essential

endogeneity of (self-supplied) price, which practically speaking meant that

only reduced forms could conveniently be estimated. Since the household’s
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internally determined shadow price is never observed, that left only a

reduced form quantity equation to be estimated. Hence the requirement of a

second valuation step for welfare analysis.

But, as just demonstrated in chapter 2, the elaborate theoretical

household production model is really not necessary as a vehicle to justify

the inclusion of a measure of the quantity of recreational resources per

unit land area in econometric models of recreation participation. This

argument offers an explicit justification for using physical availability

regressors as proxies for "average" travel-cost based activity prices in

the direct estimation of an aggregate structural activity demand equation,

rather than a reduced form. However, because of the expected-value nature

of the proxy, parameter bias is the penalty imposed by using it in lieu of

the correct individual-specific activity prices (McFadden and Reid 1975).

Yet the problem of placing a unit dollar value on the participation

change occasioned by a particular policy of recreation resource enhancement

to produce a monetary benefit measure remains. It is equally difficult,

whether we believe we have estimated a reduced form activity participation.

equation as a function of individual characteristics and site

characteristics measured by some availability measure, or a structural

activity quasi-demand equation with availability as a proxy for activity

price. In neither case do we observe individual prices directly, and the

best that can be done is to predict a quantity change conditional on a

hypothesized change in availability, and value it arbitrarily in a second

step.

To see why this valuation procedure gained currency, it is necessary

to explore the theoretical background giving rise to a "participation"

equation.
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THEORETICAL BACKGROUND: IS THE PARTICIPATION QUANTITY EQUATION REALLY A
REDUCED FORM?

In order to exploit the calculus, conventional utility theory makes

the implicit assumption that the consumer’s optimal consumption bundle will

represent an interior solution in the space of available alternatives.

That is, the maximum of the consumer’s utility function occurs at an

interior point of the budget space where all goods are consumed in positive

amounts, not at a corner where one or more commodities are not consumed at

all (Russell and Wilkinson, 1979).

Quandt (1970) observed that this implicit assumption is unrealistic in

travel-oriented applications, since consumers do not “undertake a little

bit of travel by every mode on every link in a network” (p. 5). The same

observation can be made about leisure activities, since population surveys

often reveal large proportions of non-participants. Thus, the implicit

interior solution assumption of conventional utility theory must be

relaxed, or the theory itself reformulated, in order to incorporate the

phenomenon of non-participation (i.e., zero consumption).

The first alternative is to remain within the confines of traditional

utility theory, relaxing the interior solution assumption. The corner

solution rationale for zero consumption in leisure pursuits is made by

Ziemer, et. al., (1982) based on the Kunn-Tucker conditions. Essentially

this means ruling out the class of utility functions where the marginal

rates of substitution between pairs of goods are everywhere defined and

equatable to the respective goods price ratios. For example, members of

the Bergson family of utility functions which are all transformations of

the additive (in logarithms) homothetic utility function U = are
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ruled out, since their indifference curves never cut the goods axes, and

corner solutions cannot occur.

Another route to explaining the same phenomena is to reformulate

neoclassical utility theory along household production lines. In this

"new" approach, the household does not obtain utility directly from

purchased goods or recreation site visits. Rather, it employs these goods,

along with its own time, to produce outputs of utility - yielding entities

(non-market goods, service flows, wants, or characteristics depending on

the author) over which the utility function is defined. (Cicchetti and

Smith 1973, 1976).

There are two general variants of the household model - the Becker

(1965) version and the Lancaster (1966) version, reviewed lucidly in

Cicchetti and Smith (1973). The Lancaster version, utilized to analyze

recreation choice by Rugg (1973), Mak and Moncur (1980), and Greig (1983)

is particularly appealing because its general form guarantees zero

consumption of some goods, independent of the class of utility function

specified. Conventional utility theory can be regarded as a special case

of the general Lancaster model where the production technology matrix is

diagonal. In this latter instance, corner solutions can be produced by an

appropriate formulation of the utility function. Therefore, the

flexibility of the Lancaster model to represent either the neoclassical

case with corner solutions or the “pure” Lancaster case makes it an obvious

choice. But, either theoretical household production model yields roughly

equivalent equations to be estimated from survey data explaining

recreational trips. Particularly, the inclusion of income, site

characteristics, and trip expenses or a physical resource availability

proxy thereto is commonplace (See McConnell and Strand 1981, Rugg 1973, and
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Ziemer, et. al., 1982 for superficially comparable "trips" equations

derived from different theoretical models).

To exploit the calculus suppose the popular Becker household

production framework as outlined in Deyak and Smith 1978 is used, with the

restrictive assumption of non-jointness in production. If the individual’s

recreation service flow production function is classically well behaved and

exhibits constant returns to scale, then the self-supply equation is

defined by the marginal cost, mc, of producing service flow q, and is

constant and independent of the levels of production of non-recreational

service flows. If trip cost is unobserved but is known to be a function,

t(a), of availability (Vaughan and Russell 1984) we get (1a.) below. If

site characteristics affect marginal household production cost via expected

congestion (Deyak and Smith 1978) represented by h(a) we get (1.b):

mc  = t(a) (1.a)

mc  = f(p,w,h(a)) (1.b)

where

mc =

c =

individual’s marginal cost

total cost

q =

p =

a =

w =

t(a) =

h(a) =

recreation service flow in constant quality units

prices of market goods

resource availability

wage rate

trip costs as a function of availability.

expected congestion as a function of availability.

Each individual’s inverse demand function can be expressed in terms

of income and tastes. If WP is the individual's marginal willingness to
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pay for the service flows, and the utility function is of the Bergson

family with zero cross-price effects:

WP = = g (y,s,q) (2)

where

y = individual‘s income

s = individual's tastes

TWP = total willingness to pay

The superstructure of (1.b) and (2) above can be recast into the

neo-classical mold of (1.a) and (2) if additional restrictive assumptions

are imposed (the zero cross-price assumption can be relaxed).

Particularly, goods prices can be treated as exogenous if we assume:

a fixed total leisure time constraint so there is no income -

leisure tradeoff,

trips of constant duration with zero fixed costs so the “price” of

a trip is equivalent to its variable (travel) cost,

activity categories within which sites are of fairly homogenous

quality -eg. trout fishing in coldwater streams,

a factor of proportionality converting site visits (or trips) in an

activity category into a service flow uniquely related to that

activity over which utility is defined.

In the Deyak and Smith model of Eq. 1.b and 2 individual equilibrium

is determined where the level of q equates mc to WP. For estimation, the

Deyak and Smith model produces two reduced form equations from the

structural equations in (1.b) and (2), and estimates (3) below.

q = (y, s, p, h(a), w) (3)

mc = WP = $(y,s,p,h(a),w) (4)
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In contrast, the neoclassical structural activity demand model estimates

the demand function version of (2) directly. Since travel cost-based price

is viewed as exogenous by equation (1.a), reduced form equations (3) and

(4) are not required. The neoclassical model leads to a specification

expressing q as a function of resource availability (or price, if

available), income, and tastes.

An overriding consideration in all of this is the desire to arrive at

an empirical specification which does not require price regressors, since

such information is unavailable in most population recreation surveys.1

Particularly, those who view availability variables as proxies for the

quality of the experience, manipulate the household production model either

to produce a reduced form quantity equation as above (if service flow

outputs can be measured) or derive input demand equations (where site

visits are treated as inputs). Irrespective of this sort of definitional

legerdemain, in many applications the equation specification does not

include price regressors, which happens to fit nicely with the character of

the data. But, this practice is inconsistent with the theoretic&

household model, be it a reduced form like Eq. 3 or, alternatively, a

derived site visit input demand function. 2 (See Bockstael and McConnell

1983 for the latter, perhaps more reasonable, theoretical interpretation).

Specification error bias is the obvious penalty paid for ignoring prices in

this context. In contrast, those who argue that availability variables

represent proxies for expected activity price attempt to define activity

categories finely, so that quality is roughly constant, and view the

estimated quantity equation as an activity demand curve. This

specification also fits well with the survey data, but involves no

inconsistency between theory and practice, because the estimated proxy
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price parameter ideally should capture the true parameter, up to an unknown

factor of proportionality. Because the availability proxy for the price

represents expected travel distance, aggregation bias due to averaging over

individuals (McFadden and Reid 1975) is a possible shortcoming.

VALUATION ISSUES

The conceptually correct Marshallian measure of benefits arising from

increased resource availability may be written in terms of structural

activity service flow supply and demand equations. Consider  any

individual, whose marginal cost of obtaining the recreation experience is a

function of recreation resource availability:

mc0 = marginal cost at pre-policy availability

a 0 particular to the individual,

mc1 = marginal cost at post-policy availability

a 1 particular to the individual.

Suppose a policy of supply augmentation so a 1 > a0. The individual's

marginal willingness to pay for the experience is the demand price, WP, a

function of the service flow quantity q. For the j t h individual the net

benefit of a policy of supply augmentation, NBj(a
0,a1) can be written as:

(5)

This expression is depicted graphically for two individuals in figure 3.1.

The aggregate net benefit of the policy is the sum over all j=1,

individuals of the net benefits in (5):

(6)
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Figure 3.1. Individual net benefits of increased availability
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As noted above, however, it would be very unusual to have the detailed

individual data necessary to perform the calculation written so easily. A

common situation is to have data allowing a prediction of the total

increase in quantity produced from a macro participation model,

and, from an independent source, a unit value to assign to the quantity

change.

For instance Cicchetti, Fisher and Smith (1973) suggest:

the reduced-form participation equation can
also be used, as we have suggested, to derive a
measure of the benefits from a new facility. The
amount of participation in an activity is first
forecast under changing conditions of supply, i.e.,
without and then with the new facility. Then a
measure of value or willingness to pay must be
imputed to each unit (recreation day) of additional
participation. Such measures have in the past been
set for federal projects by water-resource agencies
and approved by the U.S. Senate. Aggregate
benefits are given by multiplying the imputed value
per unit of participation by the change in the
level of participation occasioned by the new
facility. (p. 1011).

But, no explicit distinction is made by these authors between unit values

which are conceptually equivalent to marginal willingness to pay (i.e.,

activity prices or, in the household model, unobserved shadow prices) and

unit values which instead represent average willingness to pay over all

units consumed (i.e., average consumer’s surplus for the activity),

although they seem to have had the former in mind.

A survey of the unit value literature reveals that most reported

values are approximations to average, not marginal, willingness to pay

(Dwyer, Kelly and Bowes 1977). If so, the direction of the valuation bias

can be derived, and we do so below. But first, if we assume marginal unit

values are available, can the procedure be justified?
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Valuation with Marginal Unit Values

As McKenzie 1983 observes, there are two routes to welfare

measurement; the familiar one where consumer demand functions are known,

allowing direct computation of the Marshallian surplus measure; and

alternative index-number approximations based on "only the prices and

quantities that hold in alternative situations but not information about

the shape of preferences or the consumer demand functions” (p. 101). The

two-step valuation method in this context is a particularly simplistic

version of this second route.

While the adjective marginal may evoke a subconsciously sympathetic

response, valuation of a quantity change with marginal unit values (prices)

does not guarantee a close approximation to the Marshallian consumer’s

surplus measure of welfare change, let alone the desired measures the

latter approximates, compensating and equivalent variation. To

demonstrate, begin with the most general case where a single price changes.

Although the consumer’s demand function for the good whose price has

changed is unknown, assume that the quantity changes for all goods in the

consumer’s choice set are known, as are the initial and final price

vectors.

When a single price changes the product of the n dimensional row

vector of all n goods prices (measured at either their pre-policy levels,

p0, post policy levels, p’, or an average of the two) and the n dimensional

column vector of quantity changes can be used to produce welfare

approximations if the demand function for the good whose price has changed

is unknown (McKenzie 1983, Ch. 6.; Deaton and Muellbauer 1980, Ch. 7).

These measures are known respectively as the Laspeyres and Paasche quantity
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variation indices (LQV, PQV), and Harberger’s consumer surplus (HCS).

Representing the marginal utility of expenditure in situation j as Aj and

the utility index as U:

LQV = (7)

PQV = (8)

HCS = (9)

where i = 1,..., N goods.

It can be shown that the HCS measure is an approximation to

Marshallian consumer surplus, since it simply takes the short-cut of

assuming the Marshallian demand curve is linear in the region of the price

change (Deaton and Muellbauer 1980, p. 188; McKenzie 1983, pp. 109-111).

However, the two-step valuation method, lacking information on the

own-good demand function and the quantity changes taking place outside the

market of direct interest, is more restrictive than the general case

represented by (7), (8) and (9). It deals more narrowly with the product

of price and quantity change for the good whose price has changed, ignoring

quantity changes for all other goods. So, the partial measures analogous

to (4), (5) and (6), indexing the good whose price changes as i are:

(10)

(11)

(12)

The partial index number measures assume, perhaps incorrectly, zero

cross-price effects. Except for unusually restrictive demand systems (eg:

Cobb-Douglas) when the price of a single good, i, changes, the quantities

of some other goods     will change as well. But if other goods quantities

change, the partial LQV, PQV and HCS measures used in recreation benefits

analysis which ignore the sum of pjAq, for all     are unlikely to bring us
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reasonably close to the ideal welfare change measures, compensating

variation (CV) and equivalent variation (EV), or even to the approximation

they bound, Marshallian consumers surplus (CS).

The only case where quantity changes in other goods induced by a
 ~  ~ 

change in the price of the jth good can be ignored in calculating LQV, PQV

and HCS is when the elasticity of demand for the jth good is unitary in

absolute value over the region of interest. To prove this, arrange the arc

price elasticity of demand formula (where e represents the absolute value

of the arc elasticity) as:

(13)

The l.h.s. of (13) is the definition of the partial Harberger consumer

surplus measure, HCS. Expansion of the r.h.s. reveals that it represents

the arc elasticity measure, e, times an approximation to the Marshallian

consumer surplus integral c obtained by linearizing the (unknown) demand

curve between q: and qi

(14)

The two expressions following the second equality in (14) represent the

familiar welfare rectangle and triangle measures of Marshallian surplus.

So, the l.h.s. of (13) representing the partial measure HCS either

understates, overstates, or equals the approximate Marshallian consumer

surplus measure on the r.h.s. depending upon whether the absolute value of

the arc price elasticity of demand for the good whose price has changed is

respectively less than, equal to, or greater than one.
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But from (13) and (14), there is obviously no reason to compute the

partial Harberger surplus measure if qp, q;, pi and pi are all known or

if qp, P;, q; and e are known, permitting calculation of pi. In these

circumstances the approximation C”s can be obtained directly by linearizing

the unknown demand function between pl, qf and pf, qf and applying (14).

Of course the more nonlinear the demand function and the larger the price

change the poorer the quality of the approximation C> to the correct

measure CS. More often, only pq and the quantity change are known and no

assumption is made about e; the welfare change being approximated instead

by LQV. Only under unusual circumstances will LQV equal s defined in

(14). For instance, assume the unknown demand function is of the linear

form q=a-bp. Substitute this relation for the qf and qf terms in (15)

defining the ratio of & to L& to get (12):

(15)

(16)

Since p; is exogenously given the function (l-chs/LQVJ can be minimized

with respect to pi. The value Ei which sets (16) equal to one is:

(17)

From (17) if the initial evaluation point pl, qf happens to be at the

point of unit elasticity of the unknown demand function so p; = 1/2 a/b,

substitution into (17) reveals gi = pP = 1/2 a/b. The practical relevance

of this first result is that if, by fortuitous accident, the initial point
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of evaluation is at or very close to unit elasticity and the price change

is small, the measure LQV may not diverge overmuch from c”s, but will

deteriorate as pi becomes increasingly distant from pl. Second (17)

suggests that even if pp is not at the point of unit elasticity, there is a

pi (and by implication a value of q1) which sets (16) equal to 1. But

there is no guarantee that the E;, :f combination from (17) will be in the

economic region (p”t could be negative) or, if it is, that the policy being

evaluated will throw up the ;i, :; combination

LQV. Finally, when price changes are "small",

approximately equal, but, unless the underlying

that justifies the use of

LQV, -PQV and HCS will be

unknown demand function is

unit elastic over the region of change, none of them will be good

approximations to &

In conclusion, it normally will not be possible to even compute the

full LQV, PQV or HCS measures in the participation equation version of

recreation benefits analysis, because changes in the consumer’s entire

consumption bundle remain unquantified. Without knowledge of the demand

function, partial measures are unlikely to be representative of even a

crude Marshallian consumers surplus measure of individual welfare changes,

unless the utility function is such that unitary elasticity demand

functions result (eg: Cobb Douglas) or the price change happens to be in

the unit elastic region of an arbitrary demand function. While these

conditions salvage the HCS measure, if they are not met it is uncertain

whether the sum of the unadjusted HCS measures across all individuals will

or will not be a useful aggregate. But, can anything be salvaged by using

an average willingness to pay unit value rather than a marginal one? The

answer, unfortunately, is not encouraging.
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Valuation with Average Unit Values

In the usual case, only a measure 3 of individual j’s average surplus

for the quantity of recreation activity (usually dollars per day)

undertaken before a price change in activity i is available. In terms of

the demand expression (2) it may be written as:

(18)

Under what circumstances, then, is the following approximation for net

benefits a good one?

(19)

We previously examined this question theoretically, using a

representative consumer’s situation, for the simplest inverse demand

function, a linear one, p = a + bq, and for a constant elasticity function

with elasticity n, p = If the ratio q(a1)/q(a1) is written as

k, the following expressions were obtained (see Vaughan and Russell 1982

for a full derivation):3

linear demand:

constant elasticity
demand

(20)

(21)

where NB is a Marshallian consumers surplus. In addition, if the demand

function is of the semi-logarithmic form q = exp (a+bp), CS evaluated at q 0

is -(q0/b), where b < 0. This yields an average surplus 5 of 1/b. It can

easily be shown that %, the product of this average surplus and a quantity
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change given as exp(a) (exp(bp1) - exp(bp0)) is exactly equivalent to the

Marshallian consumers surplus measure NB from the definite integral of

exp (a + bp)dp.

Thus, if individual’s demand functions are all linear (or nearly

linear in the relevant range) the application of an average surplus always

understates the total Marshallian CS measure of the welfare change by a

factor of at least 0.5. If the demand function is of the constant

elasticity sort, the approximation can either be correct, understate, or

overstate the individual’s surplus. Only when the demand function is

semi-logarithmic does the procedure produce the correct result. So,

applying an average unit value to an aggregate quantity change is also

dangerous, with unknown risks a positive or negative valuation bias,

depending on the nature of the (unknown) demand function.

These theoretical results may seem bloodless and unconvincing. So in

the next section some numerical examples are constructed which verify them

and give a concrete idea of just how wrong the approximation can be.

SOME NUMERICAL EXAMPLES OF THE VALUATION PROBLEM

This section begins with some simple numerical examples which assume

demand specifications with zero cross-price effects -- a constant unitary

elasticity specification q=100/p and linear specification q=25-p.
4

We

demonstrate the workings of the marginal and average welfare measures

discussed previously, and contrast their accuracy vis-a-vis the correct

Marshallian measure, CS. All of these results are easily calculated by the

reader and, by assumption, since no other goods quantities change in

response to the price/quantity change of interest, all partial index number

welfare measure are exactly equivalent to their full counterparts (ie: LQV
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Next, a more complex example based on an arbitrary parameterization of

a quadratic utility function defined over four goods is introduced. In

that case, cross price effects are present so that full and partial index

number welfare measures are not equivalent. Solutions to this problem are

obtained by quadratic programming methods, and cannot easily be reproduced

by the reader. However, the message of the results is clear -- the two

step valuation method is generally very unreliable.

Zero Cross-Price Effect Examples

Suppose arbitrarily that price-quantity data for a particular good

show variation from a maximum price of 25 to a minimum price of 5, and that

the underlying demand functions generating the data are q-100/p and q-25-p.

The average surplus measures for each case are:5

Unit Elastic:

where 100 is the price that sets q to one and q 0 is the quantity associated

with For the linear case:

Linear:

where 25 is the price that sets q to zero and q 0 is the quantity associated

with p0.

For example’s sake take three price change situations for each demand

specification; two "small" price changes (one far removed from the unit
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elastic point of the linear function and one very close to it); and one

“large” change over the mid-range of prices (one which validates the LQV

measure).

First, suppose the base price is initially high so p0=20 and drops by

0.5 to pl=19.5 after the policy. The absolute value of the arc elasticity

of the linear function is 3.76 in this region. For this "small" price

change it is obvious that for both functions LQV, PQV and HCS will all be

approximately equal since there is little difference between the base and

post-policy marginal unit values p 0 and p 1 applied to the quantity change.

These measures can be compared to the product E*Aq=N%, the approximation

C?3, and the true value being sought, CS.7 The results for this first case

are shown in table 3.1.

Table 3.1. Case 1: Small Price Change: High Initial Price

Assumed: = 19.5

Calculated: Linear demand

q 0 5.00

q 1 5.50

True CS 2.62

2.50

10.30(3.82)a

9.75(3.72)

9.88(3.77)

2.62(1.00)

1.25(0.48)

Unitary elastic

5.00

5.13

2.53

12.18

2.56(1.01)a

2.50(0.99)

2.53(1.00)

2.53(1.00)

1.56(0.62)

a. Figures in parentheses are ratios of approximations to true surpluses.

One important lesson of this example is that the and

approximations all work quite well for the unit elastic case when the prize
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change is small, as expected, but fail rather dismally for the linear

function because the point of evaluation p0, q 0 is so far removed from the

point of unit elasticity of this function (p=12.5, q=12.5). Thus, "small"

price changes, in and of themselves, do not guarantee approximation

accuracy using marginal unit values except in the case of unit elasticites.

The second lesson evident from the example is the especially poor

performance of the product of an average surplus and the quantity change,

as expected from Eq.‘s 20 and 21.

Next, the same calculations can be made in the neighborhood of the

unit elastic point of the linear function. (Table 3.2) Here, all

approximations except the average unit value method work very well, again

as expected. Even the average value method is fairly good for the unit

elastic demand function, though it still fails for the linear case.

Table 3.2. Case 2. Small Price Change in

Neighborhood of Unit Elastic Point

Assumed: p0 = 12.75; p 1 = 12.25

Calculated: Linear demand

q 0 12.25

q 1 12.75

True CS 6.25

6.12

6.37(1.02)a

6.13(0.98)

6.25(1.00)

6.25(1.00)

3.06(0.49)

Unitary elastic demand

7.84

8.16

4.00

13.51

4.08(1.02)

3.92(0.98)

4.00(1.00)

4.00(1.00)

4.32(1.00)

a. Figures in parentheses are ratios of approximations to true surplus.
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Now, for large price changes, suppose If LQV is to be

equivalent to (5%; in the linear case, this implies a p 1 = p 1 *
of 5. The

results are given in table 3.3.

Table 3.3. Case 3. Large Price Change for which L&J=CS

by Construction for Linear Demand Relation

Assumed: p0 = 15; p 1 = 5

Calculated

q 0

q 1

True CS

cs

LQV

P?lV

H&

6%

E*Aq

Linear demand Unitary elastic demand

10.00 6.67

20.00 20.00

150.00 109.86

5.00 13.45

150.00(1.00)a 199.95(1.82)

50.00(0.33) 66.65(0.61)

100.00(0.67) 133.20(1.21)

150.00(1.00) 133.20(1.21)

50.00(0.33) 179.28(1.63)

a. Figures in parentheses are ratios of approximations to true surpluses.

Because the price change is non-marginal none of the approximations perform

well if the true demand curve is unit elastic. Particularly, the

linearization z”s overstates the true surplus CS. For the linear case a

good result in terms of LQV = G = CS has been guaranteed by construction,

and not much can be said here except that HCS diverges from CS by a factor

of 0.67, which is the arc elasticity of the linear schedule. (It is

interesting to note that if the same large price change of $10 is initiated

at p0=1 instead of 15, this minor alteration of the Case 3 initial

conditions breaks the equality of LQV and CS in the linear case.)
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All of the above examples can be worked out on a hand calculator, but

we next move on to a more complex (quadratic) formulation of the utility

function. While the numerical solution of the consumer's utility

maximization problem in different price situations requires an optimization

algorithm the lessons regarding the questionable usefulness of the various

index number approximations remain the same.

A Quadratic Utility Function Example

A useful specification of the consumer’s utility function which

provides for zero consumption of sane goods in the choice set independent

of whether the Lancaster formulation of the household model holds is the

quadratic (Pollak, 1971, Wegge 1968). It has received serious

consideration in an applied context by Wales and Woodland (1983) and,

reflecting on its didactic value, Wegge 1968 observed "... because of the

fact that inferior and superior commodities, substitutes and complements,

and zero consumption can be allowed for, a quadratic utility indicator

seems to be one of the simplest examples which can be used to demonstrate

numerically the flexibility of market behavior permissible under the

assumption of rational behavior” (p. 222).

Adopting the additive quadratic form for the utility function8 and a

standard neoclassical structure to the problem, assume three recreational

activities and a Hicksian composite commodity are in the consumer’s choice

set. Income is exogenously determined, and units of consumption of all

three leisure activities are measured in days with a total leisure time

constraint of 125 days. The consumer's optimal choice set can be

determined by solving the nonlinear programming problem:
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Max U = u(q)

where p is a 1 by 4 row vector of market goods prices, q is a 4 by 1 column

vector of quantities with the Hicksian good in the last position and y is a

scalar representing income. For the time constraint, T equals 125 and z is

a 3 by 1 column vector of recreation good quantities (days) and a is a 3 by

1 column vector of 1s.

Figure 3.2 displays typical Marshallian demand schedules for the first

activity (call it fishing), at different levels of income, fixing p2, p 3

and p 4 at 1, 10, and 1 respectively. (To solve the consumer’s problem we

used Lempke’s complementary pivot algorithm (Ravindran 1972).) It is

interesting to note that although we might expect nonlinear schedules

(Pollak 1971)9 our demand curves are very nearly linear, suggesting that

valuation of a quantity change by an average surplus dollar value will lead

to underestimation of the welfare change if a single price changes.

This is indeed the case. In table 3.4 we show the optimal solutions

to the programming problem across different income levels for two policy

scenarios. The first scenario (I) operates in the high-price low quantity

region of the good 1 demand curve, lowering p 1 from a pre-policy level of

$13 per day to a post-policy level of $8 with all other prices fixed. The

second scenario (II) starts at a pre-policy price of $7, for good 1,

reducing it to $2.

While table 3.4 is not particularly interesting in itself, it does

demonstrate the zero consumption phenomenon (for good 1 and good 3). Good

2 is an inferior good over all incomes for both price sets, and good 1 is
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Figure 3.2. Marshallian Demand for Fishing Days; quadratic utility
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Table 3.4. Optimal Consumption Bundles

Policy Fishing Passive Camping Composite Arc Quantity Average
Scenario: Days Days Days Commodity Elasticity Change, Surplus,

Income (p1) (q1) (q2) (q3) (q4) o f  Demand(q1) q1 Good 1(CS)

13 0 119.3
8 19.2 105.9

5.7
0

4823.4
4740.9

7 24.2 100.8 0 4729.9
2 49.4 75.6 0 4825.6

13
a

0
23.1

11.2 9774.3
0 9713.2

7 27.6
2 50.0

113.8
101.9

97.4
75.0

0 9709.5
0 9825.0

13 0 108.4 16.6 14725.2
8 26.2 97.2 1.6 14677.0

1
2

31.0 94.0 0 14689.1
50.5 74.5 0 14824.5

13 3.7 101.3 19.9 19650.7
8 27.7 91.1 6.2 19625.2

7
2

32.5 89.0 3.5 19648.6
51.1 73.9 0 19823.9

13 9.2
8 29.2

93.6
85.0

22.2
10.8

8.5
0

24564.3
24573.3

7 33.2 83.2
2 51.7 73.3

24598.9
24823.3

4.20 19.15 0

0.61 25.21 2.29

4.20 23.12 0

0.52 22.38 2.62

4.20

0.43

26.22 0

19.53 2.91

3.20

0.40

23.98

18.57

0.39

3.39

2.18

0.39

19.97

18.44

1.17

4.17
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Table 3.4 (continued)
Policy Fishing Passive Camping Composite Arc Quantity Average
Scenario: Days Days Days Commodity Elasticity Change, Surplus,

Income (P1) (q1)  (q2)  (q3)  (q4) o f  Demand(q1) q1
Good 1(CS)

13
8

7
2

13
8

7
2

13
8

7
2

14.8 85.8 22.5 29477.0
30.7 78.9 15.4 29521.5

1.48 15.97 2.34

33.9 77.5 13.6 24549.2
49.6 70.5 4.8 29781.7 0.34 15.74 5.34

20.3 78.0
32.2 72.8

34.6 71.8
46.3 66.5

26.7 34391.3
20.0 34469.7

0.96 11.96 4,29

18.6 34499.5
12.2 34710.9

0.26 11.70 7.31

25.8 70.2 29.0 39304.9
33.7 66.7 24.6 39417.8

0.56 7.95 8.27

35.3 66.0 23.1 39449.9
43.0 62.5 19.6 39656.1

0.18 7.67 11.32
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inferior for income levels beyond $15,000 under price set II. The arc

elasticities of demand for good 1 show that scenario I is confined

principally to the elastic region of each income-specific demand curve, and

scenario II to the inelastic region. The final two columns of table 3.4

contain the information necessary to compute a benefit measure using an

average surplus unit value.
10

In table 3.5 compensating and equivalent variation (CV, EV) along with

all of the individual-specific benefit measures discussed previously are

displayed for representative consumers,who are distinguished by income

levels and price sets.
11 Three important features of this table illustrate

our previous theoretical results:

(1) Good 1 takes a small share of total expenditure, has a low income

elasticity, and a true demand curve that is nearly linear. So,

the Marshallian surplus approximation C”s is closely bracketed by

CV and EV, as expected from Willig, 1976.

(2) The relationship between the partial Harberger measure HCS and the

Marshallian measure & is indeed proportional to the arc price

elasticity, as expected from Eq. (13) above. For example, in the

first row of table 3.5, HCS is $201.08. With an arc elasticity of

4.2 from table 3.4, the Marshallian measure from Eq. (13) is

201.08/4.2=47.88, in this case exactly equal to the value reported

in column 1, computed independently using Eq. (12).

(3) The measure N%i obtained by applying an average surplus to the

quantity change understates the true welfare measure CV by more

than half, as expected from Eq. 16.

Table 3.6 shows what happens in the aggregate if the example

population of 16 consumers (8 income levels by 2 price scenarios) is
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T a b l e  3 . 5 . Individual-Specific Monetary Welfare Change Measures

Approximate
Marshallian
a n d  f u l l  H a r - P a r t i a l P a r t i a l P a r t i a l Average Compensat ing Equivalent

Income and Paasche Harberger Surplus
P o l i c y  S c e n a r i o CppV, (HCS) (NB)

Variatlog
(CV)

Variatiog
i5J)

4 7 . 8 8
500

I

I I

10,000
I

I I

15,000
I

I I

20,000
I

I I

25,000
I

I I

30,000
I

I I

35,000
I

I I

4 0 , 0 0 0
I

I I

Notes :
a .
b .

2 4 8 . 3 5

1 7 6 . 4 7

1 5 3 . 2 0

5 0 . 4 2

2 0 1 . 0 8

1 1 3 . 4 4

0

5 7 . 7 3

3 3 . 4 6

183.84

3 3 . 7 2

1 8 4 . 2 2383.93

5 7 . 8 0

1 9 3 . 8 5

3 0 0 . 5 6

1 5 6 . 6 6

185.04

4 4 . 7 6

242.76

100.71

0

5 8 . 6 4

4 6 . 8 1

1 9 3 . 7 5

4 7 . 1 4

194.11

275.31

8 7 . 8 6

6 5 . 5 5

2 0 3 . 7 8

3 4 0 . 8 6

136.71

2 0 9 . 7 6

3 9 . 0 6

0

5 6 . 8 3

6 0 . 9 9

2 0 3 . 6 5

6 1 . 6 8

2 0 4 . 1 0

191.84

3 7 . 1 4

7 0 . 6 5

204.02

311.74

129.90

251.79

8 3 . 5 6

9 . 3 5

6 2 . 9 5

7 0 . 2 0

212.34

7 9 . 0 5

2 1 2 . 5 7

9 6 . 1 8

212.20

259.61

115.08

159.76

3 2 . 8 8

209.68

7 3 . 9 0

2 3 . 3 6

613.55

9 5 . 7 1

2 1 4 . 8 6

9 6 . 6 3

2 1 5 . 0 3

127.76

3 1 . 4 8

167.68

70.83

3 7 . 3 7

8 4 . 0 5

113.68

2 0 8 . 9 0

207.61

110.18

113.29

209.34

1 1 4 . 1 6

208.92

131.20

2 0 2 . 2 5

155.48

8 1 . 9 0

9 5 . 6 8

2 3 . 4 0

125.58

5 2 . 6 5

5 1 . 3 1

8 5 . 5 3

1 3 1 . 0 0

202.39

1 3 1 . 6 0

2 0 2 . 5 9

148.72

195.62

103.35

5 3 . 6 9

6 3 . 6 0

1 5 . 3 4

8 3 . 4 8

3 4 . 5 2

6 5 . 7 5

8 6 . 8 2

148.54

196.02

149.20

195.71

A l l  m e a s u r e s  t h e o r e t i c a l l y  h a v e  n e g a t i v e  s i g n s  f o r  a  W e l f a r e  i m p r o v e m e n t , b u t  a r e  r e p o r t e d  a s  a b s o l u t e  v a l u e s  h e r e .
F r o m  G o l d e n  S e c t i o n  S e a r c h ,  w i t h  a n  i n t e r v a l  o f  n u m e r i c a l  u n c e r t a i n t y  o f  $ 0 . 0 1 . I n  g e n e r a l  |CV| < |EV|, e x c e p t  w h e r e
g o o d  1  i s  i n f e r i o r .
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T a b l e  3 . 6 .

Wel fare  Measure  (S)

Compensating Variat ion,  CV

M a r s h a l l i a n  a n d  F u l l  Harberger
b

Surplus  t&, H C S )

P a r t i a l H a r b e r g e r  S u r p l u s  (H&J)

P a r t i a l L a s p e y r e s  tLQV)’

P a r t i a l P a a s c h e  (P&j

Average S u r p l u s  ( N”Bld

Notes :
a .
b .
c .
d .

Incomes  be low median o f
See Eq. ( 1 0 )  i n  t e x t .
C a l c u l a t e d  u s i n g  o n l y  aq , i g n o r i n g  o t h e r  q u a n t i t y  c h a n g e s .
See Eq. ( 1 4 )  i n  t e x t . Group-specific a v e r a g e  s u r p l u s e s , o b t a i n e d  a s  t h e  m e a n  o f  t h e  i n d i v i d u a l  a v e r a g e  s u r p l u s e s
i n  e a c h  g r o u p , a p p l i e d  t o  t h e  g r o u p - s p e c i f i c  t o t a l  q u a n t i t y  c h a n g e .

Aggregate  Monetary  Wel fare  Change  Measures  by  Income Group and Pr ice  Scenar io

( R a t i o s  t o  C V  i n  p a r e n t h e s e s )

Low Income Group
a
 High Income Group

a
 

Low Price  H i g h  P r i c e Low Price  H i g h  P r i c e
S c e n a r i o  I I S c e n a r i o  I S c e n a r i o  I I  S c e n a r i o  I

794 217 830 488
( 1 . 0 0 ) ( 1 . 0 0 ) ( 1 . 0 0 ) ( 1 . 0 0 )

791 250 819 490
( 0 . 9 9 6 ) ( 1 . 1 5 2 ) ( 0 . 9 8 7 ) 1 .004

386 971 232 586
( 0 . 4 8 6 ) ( 4 . 4 7 5 ) ( 0 . 2 8 0 ) ( 1 . 2 0 1 )

600 1202 361 726
( 0 . 7 5 6 ) ( 5 . 5 3 9 ) ( 0 . 4 3 5 ) ( 1 . 4 8 8 )

171 740 103 447
( 0 . 2 1 5 ) ( 3 . 4 1 0 ) ( 0 . 1 2 4 ) ( 0 . 9 1 6 )

86 36 363 224
( 0 . 1 0 8 ) ( 0 . 1 6 6 ) ( 0 . 4 3 7 ) ( 0 . 4 5 9 )

2 2 , 5 0 0  i n  l o w  i n c o m e  g r o u p , incomes  above  median in  high Income group.

Row
T o t a l

2329
( 1 . 0 0 )

2350
( 1 . 0 0 9 )

2175
( 0 . 9 3 4 )

2889
( 1 . 2 4 0 )

1461
( 0 . 6 2 7 )

933
to .4011
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partitioned into 4 roughly homogenous, equal sample groups, and group-total

welfare measures computed separately for each group and summed. The groups

are cross classified by income (less than or greater than 22,500) and price

scenario (I, II). So doing arranges individuals in cells in ascending

order according to group average arc price elasticity of demand:

Income

The patterns of under or overstatement in each column of table 3.6 are

consistent with what we would expect from the theoretical development, with

one exception. That is, while the 63 measure always understates

individually and in the aggregate, the HCS measure may come quite close to

a proper welfare total.
12

But this can only happen by fortuitous accident,

with individuals neatly arrayed across initial and post policy price levels

and income levels such that overstatements counterbalance understatements

over all.

Summing up, the two step valuation route is dictated by the lack of

accurate data on individual marginal willingness to pay for the spectrum of

recreation activities. If surveys of population recreation participation

contained individual-specific marginal willingness to pay information for

potential (as opposed to actually undertaken) visits to all available sites

for all leisure related purposes, the two step approach would be
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unnecessary. Instead, the welfare change could be obtained directly as the

change in the area behind the estimated compensated (or Marshallian)

unconditional demand function for visits of a particular sort (Bockstael

and McConnell 1983, Morey 1983) just as we would do with a marketed good.

But when such price data are not available on an individual-specific level,

prices cannot be used in estimation. Instead group average unit values,

which are perhaps prices but most likely are not, have to be found to

arbitrarily value a quantity change, however estimated.

MODEL SPECIFICATION: THE ROLE OF WATER RESOURCE AVAILABILITY AND POLLUTION
VARIABLES IN RECREATION PARTICIPATION EQUATIONS

When unit-day values are used to monetize quantity (days) changes

predicted from an econometric recreation participation model under a

scenario of recreation resource enhancement, the resultant benefit measure

is likely to be inaccurate, no matter how accurate the prediction of

quantity change. But prediction accuracy is another fundamental problem

with the macro participation equation approach antecedent to, and perhaps

as important as, the issue of valuation.

In the case of water pollution control, water resource enhancement is

presumed to bring about an augmentation in the quantity of water "suitable"

for the activity, decrease the expected congestion at and cost of travel to

“suitable” water, and to thereby stimulate an increase in days of

participation. While this chain of reasoning seems plausible it is not

universally accepted. The counter argument is that since such a small

fraction of currently available water can be labelled “unsuitable”,

marginal improvements may, except for localized situations, have an

imperceptible impact on participation costs or congestion, and hence on

aggregate participation intensity in some pollution-insensitive pursuits
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(eg. boating). A more sophisticated version of this counter-argument is

that macro cross-sectional participation models are an inappropriate

instrument for identifying pollution impacts. While there may be sane

state level cross sectional variation in the fraction of surface water

acreage which is is "unsuitable" for participation, such a measure, being

measured too broadly, may not be relevant to individual decision makers.

Rather, the physical and chemical characteristics of particular water

bodies may well be the appropriate quality attributes influencing choice.

And, even if a broad state-level aggregate measure of pollution is relevant

to individuals, observed pollution levels in any national cross-section may

be everywhere below the threshold levels which affects the perceived

utility of a particular kind of recreation experience. In this case, no

demonstrable effect will be revealed in an applied econometric analysis.

While the (negative) effect of pollution levels on the probability and

intensity of participation in all kinds of water-based recreation is hardly

a universally accepted doctrine, it has been an implicitly maintained

hypothesis in many empirical investigations, dating back to the 1966 study

by Davidson, Adams and Seneca. Again, just as in the valuation case, the

reason perhaps can be attributed to a paucity of data, rather than a

deliberate attempt to guarantee positive benefits of water quality

improvements.

To demonstrate how this situation arises, let us assume a linear

specification of the participation response function and represent

freshwater availability as Q, distance to the nearest marine or Great Lakes

coastline as D, the fraction of freshwater area polluted and therefore

unsuitable as the fraction of marine water polluted as PM, and let all

other influences on the response (y) be collapsed for simplicity into an
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augmented intercept, K. Then the participation response function in the

general model, ignoring the error specification, is, for individual i:

yi = Ki + B,(Qi) + a,(Q,*PQi) + B,(Di) + ti,(Di*Pni’ (22)

where 13~ > 0, Bz, B3, B, < 0. In this representation marine pollution can

increase the expected distance of travel to any marine or Great Lakes

recreation destination or, otherwise said, the travel-associated cost of

participation there. Similarly, freshwater pollution may withdraw

freshwater acreage from the perceived pool of available acreage and reduce

participation. The extent to which these two pollution effects are

perceived and acted upon by the recreationist depends on the magnitude and

significance of the parameter estimates of Bz and B, in the econometric

model. But that the model in (22) represents a neutral view of the role of

pollution, regarding it as a hypothesis that can be tested statistically.

If the investigator happens to be sympathetic to the skeptical view

that pollution may have no perceptible influence on participation, the null

hypotheses of his restricted model would be ti,=B,=O. If these restrictions

cannot be rejected, the implication is that water pollution reductions are

unlikely to produce any direct benefits, although option and existence

value benefits, which are not captured by the participation model, cannot

be ruled out.

Interestingly enough, tests of this sort are uncommon. Rather, the

standard procedure is to posit, as a maintained (i.e., untested,

hypothesis, that B1=-Bz, and Bs=B*. Then, by construction, marine distance

is augmented and freshwater acreage reduced by the appropriate pollution

fractions prior to estimation, yielding a decidedly "environmentalist”

model specification:
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yi = Ki + 8, (Qi (1-P Qi )) + 13, (Di (1+P  ))Mi (23)

where Here, if the parameter estimates of either B1, BZ or

both are statistically significant, the conclusion that positive benefits

will be forthcoming from pollution reductions is inevitable, but perhaps

unjustified. 13

What is one man’s reason is another’s folly, and unfortunately,

statistical criteria cannot always distinguish the two. Because both the

skeptical and environmentalist models are restricted versions of the full

model in (22) they can be tested separately against it. But, they cannot

easily be tested against each other because they are non-nested. So

restrictions of the null hypotheses of both of the restricted models may

not be rejected in separate tests against the full model. The conundrum

raised by the possibility of two plausible but non-nested narrow models is

in general irreconcilable, and even if sophisticated non-nested hypotheses

testing procedures are undertaken, they may not produce a clear cut

decision. While the narrow model with the highest likelihood function

value can be taken to represent the preferred specification (Amemiya 1981),

this model discrimination criterion (variously labelled the Sargan test or

Akaike’s Information Criterion) is not really a statistical test with Known

properties. Rather, it should be successful “on average” presuming one of

the models in the comparison set is indeed the true model.

Realistically, the quality of pollution information obtainable from

surveys (as in appendix A to chapter below) that ask environmental

officials questions like “In your state, what fraction of total freshwater

surface acreage is unsuitable for activity X due to pollution?” may be too

poor to support hypothesis tests of parameter restrictions.
14 If the state

cross sectional series on the percentage of water polluted borders on
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random noise, or if the overall average has some meaning but across-state

differences do not, there is simply not enough information in the pollution

data to lead to rejection of the restrictions of either the skeptic or the

environmentalist models vis-a-vis the full model. In such a situation,

which in our view is commonplace, meaningful tests of the role of pollution

in recreation participation models are not possible. Thus it is not

surprising that the  restr i c t ions  o f the environmentalist model are

maintained hypotheses in many water pollution control benefit studies,

especially when those who commission the study, those who undertake it, or

both, presume such benefits exist.

SUMMARY AND CONCLUSION

There are several sources of possible error in using the conventional

two-step "macro" participation method for approximating a welfare change

due to recreational resource enhancement:

(1) Mis-prediction of the change in the quantity demanded due to the

policy, as a result of using availability proxies for either price

or site attributes (previous chapter).

(2) Error in valuation due to use of either a marginal unit value or

an average surplus.

(3) Acceptance of a benefit-producing relationship without testing

against a more skeptical null hypothesis.

These problems do not inspire confidence in the two-step method of

welfare analysis employed using conventional participation equation models.

Beyond these issues is that of which estimator is most appropriate.

This is the subject of the next chapter, which explains why several

alternative limited dependent variable estimators are logical candidates
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for the estimation of recreation participation models, and why it is often

difficult to prefer any one of them over the others.

After this review the estimators are applied to recreation survey data

to produce recreation participation models incorporating pollution effects

for fishing, and swimming. In those participation equation applications,

the restrictions of the environmentalist model are maintained hypotheses,

and the benefits of pollution control so produced must be considered with

that caveat in mind.

Two separate chapters are then devoted to a slightly different

approach to water quality benefit estimation which does not explicitly use

the participation equation construct, and there we do test the

environmentalist hypothesis. In those chapters we attempt to capture the

potential benefits of water quality improvement accruing to the boating

category of recreation via the estimated demand for the durable good (the

boat) in a first step along with the estimated demand for the activity

service flow (boating days) in a second step. The ambiguous results of the

environmentalist versus full model hypothesis tests in those chapters

suggest the futil ity of  pursuing a similar exercise in participation

equation estimation.
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NOTES

1. Some studies (USDI 1973) have used “trip costs" constructed from

population survey information in participation equation estimation. If an

unconditional demand function specification is intended, trip costs must be

co l lected  on  a l l  s i tes and all  possible recreation activities every

consumer can choose among. It is doubtful that trip costs variables

constructed by averaging over several trips to many sites in one particular

activity category are adequate, and the problem of missing substitute

activity costs because participation in such substitute pursuits is zero is

usually impossible to overcome. An exception is the work of Morey 1981,

1983 who estimates conditional demand functions.

2. A cursory reading of Deyak and Smith 1978, in both the theoretical and

applied sections, leaves the impression that direct travel expenses play no

role in reduced form participation models desired from household production

theory. However, such an interpretation is apparently incorrect, since

Deyak and Smith specify the marginal cost (shadow price) of service flows

as a function of the prices of “recreational market goods” which presumably

should include travel cost as a measure of “site price”, although they do

not so state.

Notably, the empirical analysis in Deyak and Smith includes no such

measure or proxy for it, focusing instead on congestion-type variables

measured as the acres of recreational facilities per capita. Thus, their

econometric model specification appears to be distinct from their

theoretical model. Our previous work, which followed Deyak and Smith’s

empirical (not theoretical) specification appears deficient in this regard
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(Vaughan and Russell 1982) as are several other empirical analyses of

recreation participation in the literature.

The omission has rarely been explicitly addressed until recently, when

Mendelsohn and Brown 1983 observed “In order to assess the usefulness of

the household production function it is important to remember that the

fundamental purpose of recreation analysis is to determine the value of the

quality and quantity of  the public good, the recreation site. The

recreation site is a good which enters like other goods as an input into

the household production function. The critical issue is to value the site

or its objective qualities in terms of the price of the site or the price

of each quality.... Although the household production function may be able

to provide insights about why people exhibit certain tastes for goods

(sites) the tool is an unnecessarily cumbersome approach to measure the

value of sites or their qualities” (pp. 610-611).

3. When the constant elasticity demand curve exhibits unitary elasticity

formula (17) is indeterminate. But the limit of ~B/NB as n approaches one

can be calculated by L’Hopital's  rule as (k-1) (1-lnq)/(-lnk).

4. The constant unit elastic demand specification is theoretically

consistent with a Cobb-Douglas utility function. In this case the share of

total income allocated to the good in question is a constant as is the

dollar amount spent on it, irrespective of price, since the product of

price and quantity is a constant. The linear specification can be regarded

as an arbitrary first order approximation to the constant unit-elastic

function.

5. The unit elastic formula is derived in Varian 1978, p. 213.

6. For a derivation of this formula see Vaughan and Russell 1982.
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7. All formulas used for these computations are reported elsewhere in the

text, except for CS which in the unit elastic case is IpI 100/pdp
PO

= 100

(lnp1-lnp0). In the linear case C% is equal to CS.

8. The additive quadratic utility function is not both globally

quasiconcave and nondecreasing, so a  sat iat ion  point  (b l iss )  can be

reached, marginal utility can be negative, and the own Slutsky substitution

effects can become positive (compensated demand curves can become upward

sloping beyond bliss). Yet the additive quadratic utility function is

quasisconcave and nondecreasing over a subset of the commodity space--the

region southwest of bliss--which is the region of the "economic" problem of

choice. The additive form of the general quadratic utility function,

useful for didactic purposes, is defined (Pollak 1971)

U(q) = - ici ( di-qi ) 
2

where c i and di are positive parameters. The cardinal properties of the

additive quadratic (Philips 1974) are linear marginal utilities

(au/as, = 2cidi - 2ciqi) which can become negative for sufficiently large

qi ; diminishing marginal utility ( = -2ai) and independence

( aWaqiaqj  = 0).

The parameter values used in the example are ci = 1 for all i and

di=182, d
2
 = 183, d

3
 = 204 and d

4
 = 49,000.

9. The demand curves derived by Pollak 1971 are inherently nonlinear and

convex to the origin while the demand curves from the programming solution

in Wegge 1968 and our results are piecewise linear and concave to the

origin. The discrepancy arises because Pollak 1971 ignored the

non-negativity quantity constraint and derived the demand curves using

standard Lagrangian techniques while the programming solution reflects the

operation of the inequality and non-negativity constraints.
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10. The individual-specific average value column mimics the response

e l i c t e d  i n the 1975 National Survey of Hunting, Fishing and

Wildlife-Associated Recreation, which asked “Having thought about how much

this activity cost you in 1975, how much more money would you spend

annually on your favorite activity before deciding to stop doing it because

it is too expensive?” In our model, this value is captured as the average

of the equivalent and compensating variations between the base level of

participation in fishing and the zero level divided by the base level days

of fishing.

11. Policy benefits can be calculated both in compensating variation (CV)

and equivalent variation (EV) terms. (Deaton and Muellbauer 1980). Define

CV = e(p1,u0) - e(p0,u0)

EV = e(p1,u1) - e(p0,u1)

where e(e) represents the minimal expenditure required to reach the stated

utility level, given the price vector. Obviously ,  e(p0,u0) = e(p1,u1) = y0

if the consumer’s income constraint is binding (he is not beyond bliss).

To obtain the correct EV and CV measures, the quadratic programming

model must be resolved (parameterized) in steps away from either the pre or

post policy solution, where the parameterization involves decrements (for

CV) or increments (for EV) in the income available below or above y0. This

i s necessary because the expenditure function cannot be derived

analytically. Instead, a Golden Section search algorithm (Biles and Swain

1980) was employed to find CV and EV numerically. Specifically, the

problem for CV is to find (by numerical search) the income level yz < y0

that, under price vector p1, allows the consumer to obtain the optimal

pre-policy utility level u0 with income y0. Of course, u0 is known from

the pre-policy optimization run with price vector p0. Then CV = y:-y”.
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The logic for the EV calculation is similar. All welfare measures are

reported as absolute values.

12. Table 3.5 uses an individual-specific average surplus, Whether

or not total  benefits over all individuals differ much if individual

changes are valued with an individual value and summed or the total

quanity change is valued using an average of the average unit values cs

depends on the correlation between changes in quantities and If the

correlation is positive use of instead of 3 produces a lower total

welfare change, and vice versa if the correlation is negative.

13. See Vaughan and Russell 1982 for an example of t h i s  s o r t  o f

specification, which was invoked without scrutiny following Davidson, Adams

and Seneca 1966.

14. For example, s tate  o f f i c ia ls were asked this s o r t  o f question

regarding the percentage of fishable water by Vaughan and Russell 1982.

That study also employed a mathematical water quality simulation model

along with rules translating the water quality model’s ambient water

quality measures into fishable water to predict the latter as a fraction of

total freshwater. The unweighted coefficient of determination between the

survey series and the synthetic series was only 0.31, and when data were

weighted by acreage, it dropped to a disappointing 0.08.
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Chapter 4

ESTIMATION OF QUALITATIVE AND LIMITED
DEPENDENT VARIABLE MODELS

In this chapter we discuss some problems that arise in the econometric

estimation of participation models. This material may be considered as

complementary to that in chapter 3 on model specification. The treatment

will be quite detailed but even so will only brush the surface of a rich

and rapidly growing literature.

However, several high quality surveys are available for the reader who

wishes to pursue the matter more deeply. The 1981 and 1984 surveys by

Amemiya are excel lent  overviews of qualitative and limited dependent

variable models, respectively, and the 1983 monograph by Maddala provides

broad coverage in both these areas. The often-cited 1981 volume edited by

Manski and McFadden is also an excellent survey of topics in qualitative

and limited dependent variable estimation.

Some definitional preliminaries are appropriate here. First, standard

practice i s followed and random variables represented in upper-case

notation, their realizations in lower-case. Second, the terms “censored

distribution” and “truncated distribution” will be used with considerable

frequency. The introduction to chapter 6 of Maddala (1983) provides a good

heuristic explanation of censoring and truncation as they pertain to the

normal econometric model. For completeness, we present two more formal

explanations of these two phenomena as found in the statistical literature.

First, Kendall and Stuart (1973) describe truncation and censoring as

follows, using their now-classic “target” example:

Suppose first that the underlying variate x simply cannot be

observed in part or parts of its range. For example, if x is the
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distance from the centre of a vertical c ircular  target  of  f ixed

radius R on a shooting range, we can only observe x for  shots

actual ly  hitt ing the target .  I f we have no knowledge of how many

shots were fired at the target (say, n) we simply have to accept

the m va lues of x o b s e r v e d  o n  t h e target as coming from a

distr ibution ranging from 0 to R. We then say that the

distribution of x is truncated on the right at R. Similarly,  i f

we define y in this example as the distance of a shot from the

vertical line through the centre of the target, y may range from

-R to +R and its distribution is doubly truncated. Similarly, we

may have a variate truncated on the left (e .g . if observations

below a certain value are not recorded). Generally, a variate

may b e  m u l t i p l y  t r u n c a t e d  i n  s e v e r a l parts of its range

simultaneously. A truncated variate differs in no essential way

from any other but it is treated separate ly  because  i t s

distribution is generated by an underlying untruncated variable,

which may be of familiar form.

On the other hand... suppose that we know how many shots were

f ired at  the target . We still only observe m values of x, a l l

between 0 and R inclusive, but we know that n-m = r further

values of x exist, and that these will exceed R. In other words,

we have observed the first m order-statistics x (1)
, . . . , x ( m )  i n  a

sample of size n. The sample of x is now said to be censored on

the right at R. (Censoring is a property of the sample whereas

truncation is a property of the distribution.) Similarly, we may

have censoring on the left (e.g. in measuring the response to a

certain stimulus, a certain minimum response may be necessary in
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order that measurement is possible at all) and double censoring,

where the lowest r 1 and the highest r 2 of a sample of size n are

not observed, only the m=n-(r1+r2) being available for estimation

purposes. (Kendall and Stuart (1973), p. 541).

A second explanation is that of Johnson and Kotz (1969), who note

that:

T h e r e  i s c l e a r l y  a c lose analogy between censoring and

truncation, but the differences are evident. Censoring modifies

t h e  s e l e c t i o n of  the random variables; truncation direct ly

modifies the distr ibution. In other words, censoring is  an

agreement to ignore observed values because they are larger (or

smaller) than a certain number of other observed values, while

truncation is omission of values outside predetermined, fixed,

l imits . (Johnson and Kotz (1969), p. 27).

It should also be noted at the outset that the following discussion of

estimation techniques for quantitative dependent variables (e.g. measures

l ike time, days, number of trips, etc.) does not deal with the system or

multi-activity structure in terms of which recreation participation models

might be cast. That is, one can easily conceive of a system of recreation

partic ipation models ( f i sh ing ,  boat ing ,  swimming)  ana logous  to  more

familiar systems of demand equations (food, drink, shelter, and clothing,

f o r example) discussed in the econometrics literature and estimated by

techniques such as seemingly unrelated regressions. However, although

there exist systems estimation techniques for limited dependent variable

models of the nature assessed below (see, e.g., Wales and Woodland (1983)),

such techniques are expensive and  not  eas i l y implemented. Estimation

techniques for the single-equation or single-activity models discussed in
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this chapter a r e  f a r  m o r e easi ly and r e l a t i v e l y  l e s s expensively

implemented, and, as such, the discussion to  fo l low is  conf ined to  those

models that can reasonably be estimated within the scope of this project.

We also elect to set aside for future research consideration of models

of the sort discussed by Dubin and McFadden (1984) and Hanemann (1984),

these concerned in part with situations wherein individuals select one good

or  act ivity  from a set  o f  k  possible  goods or  act ivit ies . Although such

research has potentially f ru i t fu l applications

recreation participation decisions, full treatment

this chapter.

The plan for the remainder of this chapter is

in the analysis of

is beyond the scope of

as follows. First, we

br ie f l y assess problems assoc ia ted  w i th  l eas t  squares est imation of

participation models. Then we turn to a discussion of some techniques that

might be considered more or less appropriate for the estimation problems

attendant to recreation participation analysis. Following this we turn to

a discussion of prediction based on the estimation of the various models.

A summary concludes the chapter.

SOME PROBLEMS WITH LEAST-SQUARES ESTIMATION OF PARTICIPATION

The data used in participation analysis commonly displays one or more

propert ies  that  make s imple  least  squares  inappropriate ,  because the

resulting parameter estimates are biased and inconsistent, The alternative

techniques usually involve iteration and are more costly than the simple,

familiar methods. T o  s e e  t h e  o r i g i n s  o f  t h e  p r o b l e m s  c o n s i d e r  t h e

multivariate linear model:

Yi = Xi!3 + E., where i indexes observations (1)1

and si has zero mean and constant finite variance The model satisfies
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full ideal conditions (Schmidt p. 2) when:

i ) X is a nonstochastic matrix of rank k<T, and has the property that

lim X’X/T is finite and nonsingular;
T-m

i i )  E=[E,]
1 is distributed multivariate N(0, 6’1,).i

But whether or not E: is distributed normally, it can be shown that the OLS
#b

est imator  B = (X'X)-1X'y is unbiased and consistent.

As  d i s cussed  in  de ta i l  be l ow ,  a  very  genera l characterization of

quantitat ive partic ipation data is  that  i t is data bounded from below by

z e r o ,  i . e . i t  is  real ized only in nonnegative quantit ies . Of  spec i f i c

concern here are measures like “amount of time spent engaged in some

ac t iv i ty . ” Such measures are generally modeled econometrically as the

censored or truncated counterparts of normally-distributed latent random

v a r i a b l e s  YI h a v i n g  E(Yi) = xp, Var(Yi) = ~7’. However, i f the

real izat ions of  Y i are censored from below at zero, we have

E:Y;/:I,>C; = X;bA + o~p;,* (2)

E!Y:)* = x, BOi -+- UQi,

where pi and @,1 are the standard normal density and distribution functions

e v a l u a t e d  a t  (X, 6/c;.  .1 I n the truncated case, where Pr(yi1>0) = 1,
Y,Y,v“\c\* .i1 = Xi6 + af$./@..: 1 (3)

The problems inherent in least squares estimation may be explained

using these expectations. E(aq+‘@ij  f V,A then E(Ei) f 0 so that ei is

defined a s  t h e  d i f f e r e n c e  b e t w e e n  e i t h e r  E(Yi) or E(Yi|yi>0) and XiB in

(2) . Thus least squares regression of  y  on X wil l  y ield inconsistent

estimates of because the null error expectation assumption has been

violated. (Heckman (1976) provides a good general discussion of such

problems.)
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Although not  al l  measures of  interest  in our analysis  are cast  in

terms of normally-distributed, partially-observed, random variables, these

constitute the main realm of our inquiry. In the other cases we shall

investigate, however, there  are  o ther  charac ter i s t i c s of the data or

statistical distributions assumed that render least squares inappropriate,

given the object ive  of  consistent  parameter  est imation. For example,

least-squares est imation strategy is  general ly  completely  inappropriate

when outcomes are qualitative, as no objective function of interest can be

cast in terms of linear expectations functions like those above. We now

turn to an assessment of various approaches to the estimation of

participation models.

TOBIT PARTICIPATION MODELS

A logical starting point in any discussion of limited dependent

variable model estimation is the basic Tobit model. The nature of several

of the participation measures of interest in the micro data sets being

analyzed in this study is such that Tobit estimation would seem--at least

at first blush--to be a sensible approach.

Tobit estimation has been utilized in a variety of areas in applied

microeconomics, ranging from labor supply (see the excel lent  survey by

Killingsworth (1983)), to health economics (Ostro, (1983)), to commodity

demands or expenditures (Tobin (1957), Pitt (1983)), and many others (see

Amemiya (1984) for an extensive bibliography).

The basic idea underlying Tobit est imation is  that  one posits  the

ex i s t ence  o f ( latent)  normally , independently-distributed (NID) random
*

variables Y i - NID(Xi B, a’). In many interpretations of the Tobit model,

the  Y”,1 are  stochastic  indicators  of  intensity  of  desire  for  undertaking
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s o m e  a c t i v i t y .  O w i n g  t o  t h e  n a t u r e  o f  t h e  a c t i v i t y ,  h o w e v e r ,  s o m e

realizations of the    are censored while for the others, the intensities,

are  mapped  d i rec t ly  in to  ac tua l  under tak ings  o f  the  ac t iv i ty .  Some

thresho ld ,  in  e f f e c t ,  i s  c rossed  such  that  the  ac t iv i t i e s  are  ac tua l ly

undertaken. For example, the fundamental idea behind Tobin’s seminal paper

is that the  represent intensities of desire to purchase consumer

durables. When certain (assumed known) thresholds are crossed, these

intensities become actual purchases: In most applied areas, the thresholds

are zero, so that the mappings from intensities into undertaken activities

can be looked at as occurring when the realizations of the    occur in the

interior of commodity space. Otherwise corner solutions obtain (for one

discussion of estimation in the Kuhn-Tucker/corner-solution/Tobit context,

see Wales and Woodland (1983)).

Assuming, then, that the thresholds are known and constant across

individuals, the basic Tobit model can be described by (4):

(4)

Setting C = 0 gives the model we shall discuss below. Letting    signify

the index set for observations for which max (0 be the

index set  for observations for which max(0,     > 0, then the likelihood,

function for the Tobit model described here is

(5)

where   is the standard normal distribution function and

In log form (5) is
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(6)

where       denotes cardinality and where terms not involving        are
dropped.

The first-order conditions for maximizing     are the (k + 1) equations

(7)

where   =            Using terms in these equations, the method of

Berndt-Hall-Hall-Hausman (1974) among others, can be used for optimization,

and statistical inference is based on the asymptotic t-tests generated by

utilizing as the estimate of cov is  the i - th term of

Several characteristics of the Tobit model are noteworthy. First, as

Amemiya (1984) points out, the likelihood function (5) can be rewritten as

( 8 )

Written in this form, the likelihood function of the Tobit model can be

viewed as the product  of  the l ikel ihood functions of  a  binomial  probit

model with parameter vector   = ( f i r s t  b r a c k e t s )  a n d  a

truncated-at-zero normal distribution with parameters  and 

As such, separate maximization subject to the

restrictions that the probit parameter vector be a positive scalar multiple

(specifically      of the parameter vector of the truncated normal model

yields the Tobit model. The probit component be viewed as the model of
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whether  o r  no t  the  thresho ld  i s  c rossed , while the truncated normal

component models  the condit ional  phenomenon of  the magnitude of  the

activity given that the activity is undertaken.

I t  i s  c e r t a i n l y  r e a s o n a b l e  t o cons ider  the  poss ib i l i t y  that  the

parameter restrictions described in the preceeding paragraphs are in fact

inva l id .  I f  they  were ,  i t  wou ld  ind i ca te  that  the  mode l  o f  thresho ld

cross ing  i s  no t  as  in t imate ly related to  the condit ional  model  o f the

magnitude of the undertaken activity as is implied by the Tobit model. In

the context of recreation participation, this could mean that the decision

about whether or not to engage in some form of water-based activity is

governed by a set of parameters different than that determining the amount

of  part ic ipation undertaken given that  some partic ipation occurs.  We

discuss such issues in greater detail later in the chapter.

Another characteristic of the Tobit model that merits discussion is

the fact that the parameters estimated under one assumptions of the Tobit

model are in general nonrobust to departures from many of the underlying

assumptions.  That  is ,  v io lat ion in the data of  some of  the propert ies

implied when the likelihood function is written in the form (5) will lead

to inconsistent estimates of the parameters This phenomenon, is

common in many types of models that are estimated by means of maximum

likel ihood.

Two of the most often discussed violations that bode dire consequences

for Tobit parameter estimates are violations of the NID assumption. First ,

note  that  normal ,  homoscedastic  errors  are implied when writ ing the

l ike l ihood  func t i on  in  the  f o rm (5) . Two possible  violat ions of  this

assumption are that the error variances are nonconstant across

observations, and second, that the error structure, though perhaps
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homoscedastic, is nonnormal. The results of several studies, summarized by

Amemiya (1984), indicate that under either type of departure, the maximum

likelihood Tobit parameter estimates are inconsistent.

I t  i s ,  o f  c o u r s e , generally unknown ex ante whether or not the data

being analyzed are characterized by the ideal properties. It then becomes

essential  to  determine whether there exist  such violat ions i f  one is  to

have some degree of confidence in the consistency properties of the Tobit

parameter estimates. We describe briefly two tests that have been proposed

to detect departures from the Tobit “ideal” conditions. The first test is

for heteroscedasticity of a given form, while the second is a more general

test for misspecification.

The idea behind the test for heteroscedasticity, proposed by Smith and

Madda la  (1983 ) ,  can  be  mot iva ted  as  f o l l ows .  The  (k+1 )s t  f i r s t  o rder

condition of the Tobit ML model, =0,  can tr ivial ly  be rewritten

 =0, if we assume that , where the dimensionality of 

is  one, and that =1.   In general ,  however,  i t  is  possible  that  the

dimension of    is greater than one and that    follows a perhaps complicated

parametr i c  re la t i onsh ip  that  can  vary  across  observat i ons .  In  what

follows, we consider the case where , where is some

proper or improper subset of Homoscedasticity implies     = 0.

In this context, the origin of the inconsistency of the Tobit

estimates under heteroscedasticity is as follows. In assuming

homoscedasticity, the analyst estimates the parameters    (    ) based on the

(k+1)  l ikel ihood equations (7) . Given heteroscedasticity of the above

form, not only do these equations depend on   , as well as but the

p likelihood equations                     =0, where p = are entirely
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o m i t t e d  f r o m  e s t i m a t i o n .  G i v e n  t h i s ,  t h e  i n c o n s i s t e n c y  i s  h a r d l y

surprising.

Smith and Maddala propose a simple test for heteroscedasticity when

t h e hypothesis seems a reasonable alternative to the

(homoscedasticity) hypothesis. The test is simply to base estimation on

the (k+p+1) likelihood equations

(9)

The test for heteroscedasticity, then, is a likelihood ratio test based on

the restriction    = 0. One can also examine the asymptotic t-statistics

on the individual elements of    to see if any of the hypotheses

can be rejected.

The second and more general test for misspecification of the Tobit

model is that proposed by Nelson (1981). Because of its generality, it is

both valuable and nondiagnostic. It is valuable because the analyst need

n o t  s p e c i f y  t h e  n a t u r e  o f  t h e  s u s p e c t e d  d e p a r t u r e  f r o m  t h e  T o b i t

assumptions. It  is  nonil lustrative because,  as  an omnibus test ,  should

misspecification be indicated the source thereof is not made apparent. The

test in principle can detect problems such as errors in measurement on the

dependent variable (Stap le ton  and  Young  (1984 ) ) ,  nonnormal i ty ,  and

heteroscedasticity, but  can also  detect  other phenomena such as omitted

variables. As such, a significant Nelson statistic is important, but still

leaves the researcher in somewhat of a quandary.

The Nelson test is a Hausman (1978) test based on moment estimators of

functions of the model’s parameters which are consistent  but  inef f ic ient

under general  condit ions.  The detai ls  are fair ly  complicated,  and the
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r e a d e r  i s  r e f e r r e d  t o  N e l s o n ’ s  w o r k  f o r  t h e i r  d e v e l o p m e n t .  I n  t h e

discussion of truncated models below, an  ex tens ion  o f  Ne l son ’ s  t e s t  i s

proposed, and some details of the basic Nelson procedure are discussed in

that development.

CRAGG-CLASS PARTICIPATION MODELS

In a 1971 paper, Cragg proposed a set of models for situations that

can be depicted as follows. An economic agent makes two decisions. A

dichotomous decis ion is  made about  whether or  not  to  engage in some

activity . Conditional on an affirmative for this decision, a decision is

made regarding how much of the activity to pursue. The activities can be

construed in the broadest of terms: expenditures, quantities demanded or

supplied, or the amount of time spent in recreation participation. Such

models have come to be known as "hurdles" models, that is, conditional or

some hurdle being crossed, a decision is made about sane magnitude of

interest .  Although these decis ion processes  might  in  some cases  seem

logically to be ordered in a temporal manner, the statistical properties of

the model abstract from any temporal considerations, the quantity decision

being described in terms of conditional densities.

Cragg proposed several models.  However, because of the nature of the

present study, only two members of this set will concern us here, these

being the formulations wherein the quantity or second-stage decis ion is

defined only for positive real. This is in obvious reference to ideas like

“given that an individual participated in activity x, how much time was

spent engaging in the activity.” Although Cragg’s other formulations are

also interesting, their discussion is omitted for economy of space.
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For notational ease, we will assume that the same vector of

independent variables ,       inf luences both the f irst -and second-stage

decisions. This is a completely innocuous assumption, however, as elements

of parameter vectors can be restricted equal to zero to accommodate more

genera l  cases .  Regard less  o f  the  spec i f i ca t i on  o f  the  se cond -s tage  o r

c o n d i t i o n a l  d e c i s i o n ,  t h e  f i r s t - s t a g e  i s  d e s c r i b e d  b y  a  b i n a r y

probit model, i.e. the existence of latent random variables

i s  p o s i t e d .  O n l y  t h e  s i g n s  o f  t h e  r e a l i z a t i o n s  a r e

recorded, however, and are codified according to

(10)

Because of  this  codi f icat ion scheme,  there is  no information about the

scale of the random variables         (i.e. the mappings of         into     are

unaffected by transformations of      the form       for       Therefore,

some normalization is required, the most common being   = 1. This

formulation gives rise to Cragg’s equator (7), where, with some change

from Cragg’s notation, we specify

(11)

where   is the standard normal distribution function (Cragg uses C(*) for

For strictly positive second-stage quantity realizations, Cragg

proposes two alternative formulations. Both are based on the specification
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o f  t h e conditional densities for random variables given that  the

activity is in fact undertaken.

The first formulation, described by Cragg’s equation (9), is one where

the conditional density for the realizations of the  is

truncated-normal, with the truncation point at zero. Thus we have

, otherwise,

(12)

Here  and  are the standard normal density and distribution functions.

With similar notational change, Cragg’s equation (9), the (unconditional)

likelihood of the positive realizations, can be written as

(13)

for    >  0 .  Therefore,  the l ikel ihood function of  the Cragg eqs.  (7) - (9) .

model is

(14)

where   is the index set for i such that is the index set

for  = 1. Written in log form,

(15)

In the form (15), it is straightforward to see that maximization of i s

fully equivalent to the two-stage maximization problem:
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1) Probit estimation of the parameter vector

2 )  T r u n c a t e d - n o r m a l  e s t i m a t i o n  o f  t h e

maximization of

Because of the complexity of the log likelihood (15), estimation in this

via maximization of

(16)

parameters                 via

(17)

two-stage fashion is  l ikely  to  be  somewhat easier  than attempting to

maximize (15) with respect to the (2k+1) parameters 

Cragg’s second formulation again depends on the probit first-stage

m o d e l ,  o u t  t h e  c o n d i t i o n a l  d e n s i t y  o f  t h e  p o s i t i v e  r e a l i z a t i o n s  i s

respeci f ied. Instead of  assuming that  the condit ional  density  of  the

p o s i t i v e  r e a l i z a t i o n s  o f      i s  t r u n c a t e d - n o r m a l ,  t h e  m o d e l  i s  n o w

formulated such that the logarithms of the     are normal, i.e. conditional

on              This is Cragg’s equation (10). The

condition& density for the      is

(18)

where the term        is the Jacobian of the transformation from

t o  l o g       T h e r e f o r e ,  t h e  l i k e l i h o o d  f o r  t h e        w h i c h  i s  C r a g g ’ s

equation (11), is
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The likelihood function for the entire sample is

(19)

(20)

In log form,

(21)

As in the eqs. (7)-(9) model, the eqs. (7)-(11) model can be estimated in

two stages:

1) Probit estimation of    as above;

2 ) OLS estimation of     using the log transform of the   as

dependent variables and    as the independent variables. This is

perhaps surpr i s ing ,  but results because the terms i n  ( 2 1 )

involving are identical to those of the likelihood function

of the familiar normal linear model.

Because of the simplicity of this two-stage approach, estimation in

such  a  f ramework  i s  obv ious ly  appea l ing .  Duan ,  e t .  a l .  ( 1983 )  have

proposed the Cragg (7) - (11)  model  to  est imate medical  expenditures :

individuals either have or do not have medical expenses, and given that

they have medical expenses, the conditional density of the expenditures is

lognormal, log
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TRUNCATED-NORMAL ESTIMATION

As described above, estimation of the truncated-normal model is the

relevant second step in est imating the Cragg (7) - (9)  model  where the

positive observations are assumed to follow a truncated-from-below normal

distribution. Although there are several variants of the truncated normal

-- truncated-from-below, truncated-from-above, doubly-truncated; constant

o r  n o n c o n s t a n t  p o i n t ( s )  o f  t r u n c a t i o n  - -  t h e  d i s c u s s i o n  h e r e  w i l l

concentrate on the case most relevant to the present empirical work, viz.

the truncated-from-below distr ibution where the point  of  truncation is

constant across observations and is assumed to be zero. The results easily

generalize, however, and for a discussion of the statistical properties of

the truncated normal distribution in the most general case, the reader is

referred to Johnson and Kotz (1970, pp. 81-87).

It should be noted that interest in the truncated normal should not be

confined to  the role  i t  plays in the Cragg model .  The distr ibution is

useful in many empirical situations. Hurd (1979) notes that

( e ) s t i m a t i o n  b a s e d  o n  o n l y  p o s i t i v e  y ’ s  c o m e s  a b o u t  v e r y

naturally in a number of kinds of studies. For example, in many

labor supply studies one of the right-hand Variables, the wage

rate, is only observed when the left-hand variable, labor

supply, is positive. Imputing the unobserved wage rates causes

a number of complications that can be avoided by discarding

those  observat i ons  f o r  whi ch  labor  supp ly  i s  ze ro .  Another

example is a demand study where the price is not known unless a

purchase is made. (Hurd, 1979, p. 248).

Furthermore, as we will see below, estimation of the truncated normal model

on the nonlimit observations of a data set in which data on both limit and
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non l imi t  observat i ons  ava i lab le ,  in  con junct i on  wi th  an  in formal  t es t

suggested by Olsen (1980), can give sane indication as to whether a Tobit

model estimated on all observations is an appropriate specification.

For our purposes, the likelihood function of the truncated normal can

be constructed as follows. We assume the existence of         realizations

of random variables                     However, for whatever reasons, only

the positive realization of the     are used in the analysis, these assumed

to number        Given these assumptions, the likelihood function is

(22)

where    is the standard normal density evaluated at                 and   

is the standard normal distribution function evaluated at      which

serves as the normalizing factor of the truncated density. The

log-likelihood function (suppressing terms not depending on i s

(23)

Estimation is by means of maximum likelihood. The first-order conditions

for a maximum of    are

(24)
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The second derivatives are complicated and will not be presented here.

Exper ience  has  demonstrated  that  the  Berndt -Hal l -Hal l -Hauman f i r s t

derivative approach for optimization works rather well.

In the case of the truncated-normal, as for almost all other limited

dependent  var iab le  mode l s ,  o rd inary  l eas t  squares  e s t imat i on  o f  the

parameters yields biased and inconsistent estimates. However, in the

case of the truncated normal, Olsen (1980) has shown how the OLS estimates

can be used fruitfully to generate estimates of   that, while

inconsistent, can provide remarkably good approximations to the maximum

likel ihood est imates  (our experience in other  areas is  consistent  with

Olsen ’ s  f ind ing )  and ,  as  such ,  serve  as  exce l l ent  s tar t ing  va lues  f o r

maximum likelihood estimation algorithms.

Olsen’s method relies on a method of moments technique whereby the

moments (specifically the mean and variance) of the empirical incomplete

d i s t r ibut i on ,  tha t  o f  the  pos i t i ve     a re  r e la ted  t o  the  moments  o f  the

complete distribution via formulae developed by Pearson and Lee (1908).

Extending the Pearson-Lee methodology to the multiple regression case,

Olsen demonstrates that the least squares slope coefficients differ from

the true slope coefficients by a common factor, and he presents in tabular

form the multiplicative correction factors needed to transform the OLS

estimates of the slope, intercept, and standard error parameters (based or

data from the incomplete  distr ibution)  to  the corresponding complete

distribution estimates. In practice, we have fitted polynominal functions

of the third degree to Olsen’s tabled data so that the transformations are

fac i l i ta ted .

Olsen also presents the multipliers for transforming the

(mean/standard error) ratio estimated by OLS on the incomplete distribution
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to  the corresponding rat io  of  the complete  distr ibution, Olsen

notes that where  is the standard normal cumulative distribution,

s h o u l d  g i v e  a n  i d e a  o f  t h e  e x p e c t e d  r a t i o  o f  n o n t r u n c a t e d  t o  t o t a l

observations. Therefore, i f  one is  considering Tobit  est imation of  the

parameters of a censored distribution, it should hold that the based

on  the estimated using Olsen’s method and treating the nonlimit

observations as truncated normal should accord approximately with the ratio

of noncensored to total observations. There is no formal test to assess

h o w  c l o s e l y  t h e s e  s h o u l d  a c c o r d  h o w e v e r .  O l s e n  s u g g e s t s  t h a t  a

disagreement here could well indicate that the Tobit is an inappropriate

speci f icat ion.

As  i s  the  case  in  the  censored  normal  mode l  d i s cussed  ear l i e r ,

misspecification of the truncated-normal model has serious consequences for

the consistency of maximum likelihood estimates. We describe briefly a

general test for such misspecification.

Use of the Hausman (1978) specification test has become increasingly

popular. Nelson (1981) has proposed a version of the test for

misspeci f icat ion of  the censored-normal  (Tobit )  model .  We here fo l low

closely Nelson’s development and adapt his test to the case where the model

of interest is truncated-normal.

For the complete distribution where random variables t h e

truncated-from-below normal density is defined by

(25)

,  e l s e ,
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where  are the standard normal density and distribution functions,

and the point of truncation is assumed to be zero. As in the case of the

censored-normal model, if the maintained hypotheses (e.g. errorless

dependent variables, homoscedastic errors, normality) are violated,

inconsistent estimates of the parameters wi l l  genera l ly  resu l t  i f

est imation is  by maximum l ikel ihood based on (25) .  This  is ,  o f  course,

analogous to the problems inherent when the censored-normal is

misspecified.

T h e  b a s i c  i d e a  u n d e r l y i n g  t h e  N e l s o n  t e s t  i s  t h a t  t h e r e  e x i s t

functions of the parameters of the model that under a large variety of

c i r cumstances  are  robust  aga ins t  misspec i f i ca t i on  o f  the  under ly ing

density. Such functions serve as the “consistent-inefficient” component of

the Hausman test. The “inconsistent-efficient” component is the MLE of the

model’s parameters or (because of ML invariance properties (see Cox and

Hink ley  (1974 ,  p .  287 ) ) ,  func t i ons  thereo f  e s t imated  under  the  nu l l

hypothesis of no misspecification.

Because the censored- and truncated-normal densities are intimately

related, we, like Nelson, use estimates of        as the basis for the

test. Here, X is the Txk matrix of independent variables, and Y is the Tx1

vector having typical element    Our development follows that of Nelson

on pages 1327 and 1328 of his paper.

For the truncated-normal model as defined by (25) (see Johnson and

Kotz (1970), pp. 81-87) we have:

(26)
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(27)

(28)

where   is the Tx1 vector with typical element      The method of

moments estimator of    is     The limiting variance of

                    is

(29)

where   is the TxT diagonal matrix with typical element          as

defined in (26) and (27).

The efficient estimator of      denoted   is obtained by

evaluating (28) at      signifies a MLE). The limiting variance of

  is obtained via the analog to the approximation of Nelson’s equation.

(3.9) and is

(30)

evaluated at    It is estimated as by evaluating  at   

C   =     where I is the estimated information matrix.

The test statistic is

(31)

where  is (29) evaluated at     Under the null hypothesis of no

misspecification, m -     
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HECKMAN‘S APPROACH: SAMPLE SELECTION BIAS

Currently, the most prevalent limited dependent variable estimation

techn ique  i s  the  sample  se l e c t i on  b ias  mode l ,  a t t r ibutab le  l a rge ly  t o

Heckman (1976 ,  1979 ) .  The  mode l  has  a  number  o f  app l i ca t i ons  ( see

Heckman’s  1976 artic le  in particular) , and  i s  qu i t e  easy  t o  e s t imate .

Because it is so well-known, we will only provide a sketch of the details.

The following section, which contrasts and compares the Tobit, Cragg, and

Heckman  mode l s ,  sheds  some  more  l i ght  on  subt l e t i e s

formulation.

Heckman considers the following two-equation model:

of Heckman’s

(32)

(33)

It is assumed that    and     are distributed joint normal, with marginal

densities N(0,  and N(0,  respectively, and covariance  It can

be further  assumed that  the real izat ions    are  unobserved.  However,

discrete sign indicators      are available and are mapped as

(34)

In Heckman’s model, the realizations are available to the analyst only

when       0, i.e. when     =1.

A concrete example is where (32) is a model determining market wage

rate (or  log(wage rate) )  by a  l inear function of and random error and

where (33) is a model determining hours of labor supplied in the market.

It  is  assumed that  e ither  hours of  labor  supplied or  a  discrete  binary

indicator of whether or not any hours were supplied is available for all

observations. However, because market wage rates are only observed for
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individuals for whom the market wage rate exceeds the reservation wage at

zero hours, data on the     are available only when 

Heckman then considers the expectation             which can be

written as

(35)

I f  one considers  least-squares est imation of  (35) ,  the question is :  Are

the estimates of    consistent when     is regressed on those    for which

      Basically the issue is whether the expectation            is

n u l l .  I n  g e n e r a l ,  a n d  t h u s  a t  t h e  c o r e  o f  t h e  s a m p l e  s e l e c t i o n  b i a s

problem, the answer is "no". Based on well-known formulae, it holds that

(36)

where    is the standard normal density evaluated at         and   is

the distribution function evaluated at the same point. Because is in

general nonzero and since are all positive, then least

squares estimation of (35) will be based on an expectations function with

nonnull  disturbance expectation,  and wil l  therefore yield inconsistent

estimates of

Heckman ' s  sugges ted  procedure  in  th i s  s i tuat i on  i s  as  f o l l ows .

Estimate on the entire sample a probit model for the discrete indicator

representation of the model (33). This yields a consistent estimate of the

parameter vector       from which consistent estimates of 

are constructed. Form the Tx(k+1) matrix Z =        where A is a Tx1

vector with typical element   and regress   on      This procedure

yields consistent estimates of the parameters  and    having
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ef fect ively  solved the omitted variables  problem by using a consistent

estimate of         as a regressor.

In the context of participation models, one could define a s  s o m e   

latent index of the desire to participate. Given that this index is

greater  than some threshold level ,  part ic ipation results ,  i ts  magnitude

determined by the realization The translat ion of  the part ic ipation

model  into  Heckman’s  framework is  not  straightforward,  however.  For

nonparticipants, we observe zero hours of participation rather than not

observing the amount. It is therefore difficult to interpret the meaning

of  the real ized,  but  unobserved,    for  nonpartic ipants .  We turn in the

next  sect ion to  a  more detai led analysis  of  such subtlet ies .

TOBIN, CRAGG, AND HECKMAN: A DIGRESSION

As there are some similarities between and among the models described

above and identified for expositional parsimony as the models of Tobin,

Cragg ,  and  Heckman,  i t  i s  p robab ly  appropr ia te  t o  summar ize  the i r

similarities and differences and in so doing to elucidate the circumstances

in  which  each  mode l  i s  more  o r  l e ss  appropr ia te .  (The  d i s cuss i on  o f

Cragg ’s  model  here is  the Cragg (7) - (9) ,  i .e . ,  probit / truncated-normal ,

model as that version is most similar to the others discussed here.)

First note that the Tobit model is a restricted version of both the

Cragg and the Heckman models. The reason for this is purely mechanical,

however, and should not be taken to imply that the Cragg and Heckman models

a r e  i n  g e n e r a l  i d e n t i c a l .  A s  w e  w i l l  s e e  b e l o w ,  t h e s e  m o d e l s  a r e

structurally quite different.

To see that the Cragg model reduces to the Tobit, the Cragg

log-likelihood function can be written (following Lin and Schmidt (LS)
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(1984)) as

(37)

If the restriction    =    is imposed, then the first two terms in the

square brackets cancel and (37) is easily seen to be identical to (6) with

 in (6) replaced by  from (37). The upshot of such parameter

r e s t r i c t i o n s  i s  h a r d l y  t r i v i a l ,  h o w e v e r .  A s  s p e c i f i e d ,  a n d  d i s c u s s e d

br ie f l y  ear l i e r ,  the  Tob i t  mode l  i s  f a i r ly  res t r i c t i ve  in  i t s  behav iora l

implicat ions,  as  the parameter  vector  that  governs the probabi l i ty  of

observing an above-threshold realization of the dependent variable is the

same as that governing the quantity realization of the dependent variable

given that it is above the threshold. Owing to the implications of such

restrictions, LS have concluded that ".. .the Tobit model is typically used

with more faith than it warrants...” and have developed a test (which we

discuss below) for the appropriateness of the res t r i c t i on  o f  the

Cragg model  that  is  implied by the Tobit  speci f icat ion.  The fo l lowing

excerpt from LS provides a particularly cogent summary description of the

appropriateness of the restricted (Tobit) versus the unrestricted versions

of the Cragg model Lin and Schmidt, 1981, pp. 174,5):

(I)n the Tobit model any variable which increases the probability

of a non-zero value must also increase the mean of the positive

values; a positive element of    means that an increase in the

corresponding variable (element of increases both Pr

and               This is not always reasonable. As an example,
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consider a hypothetical sample of buildings, and suppose that we

wish to analyze the dependent variable “loss due to fire,” during

s o m e  t i m e  p e r i o d .  S i n c e  t h i s  i s  o f t e n  z e r o  b u t  o t h e r w i s e

positive, the Tobit model might be an obvious choice. However,

i t  i s  n o t  h a r d  t o  i m a g i n e  t h a t  n e w e r  ( a n d  m o r e  v a l u a b l e )

buildings might be less  l ikely to  have f ires ,  but  might have

greater average losses when a fire did occur. The Tobit model

can not accommodate this possibility.

Another problem with the Tobit model is that it links the shape

of the distribution of the positive observations and the

probab i l i t y  o f  a  pos i t i ve  observat i on .  For  rare  events  ( l ike

fires), the shape of the distribution of the positive

observations would have to resemble the extreme upper tail of a

n o r m a l ,  w h i c h  w o u l d  i m p l y  a  c o n t i n u o u s  a n d  f a s t e r  t h a n

exponential  decl ine in density  as  one moved away from zero.

Conversely ,  when zero occurs less  than half  o f  the t ime,  the

Tobit model necessarily implies a non-zero mode for the non-zero

observations.

Cragg’s model avoids both of the above problems with the Tobit

model. A reasonably strong case can be made for it as a general

a l t e rnat ive  t o  the  Tob i t  mode l ,  f o r  ana lys i s  o f  da ta  se t s  t o

which Tobit is typically applied--namely, data sets in which zero

is a common (and meaningful) value of the dependent variable and

the non-zero observations are all positive. The distribution of

such a dependent variable  is  characterized by the probabi l i ty

that it equals zero and by the (conditional) distribution of the
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positive observations, both of which Cragg’s model parameterizes

in a general way.

As mentioned above, a formal test of the validity of the restrictions

on the Cragg (7) - (9)  model ,  such that  the restrict ions imply the Tobit

specification, has been proposed by Lin and Schmidt. Their observation is

that since the Tobit model can be viewed as a restricted Cragg model, a

straightforward test for the validity of the restrictions (that furthermore

circumvents the need to estimate both the restricted and unrestricted forms

of the model) is a Lagrange multiplier The simplicity of the test

is extremely attractive. Based on the results of the Tobit estimation, the

Lagrange multipl ier  statist ic  is  calculated,  and,  using a test, the

val idity  of  the restr ict ions is  tested.  I f  the test  indicates  re ject ion of

the null  hypothesis  that  the restrict ions hold,  then the Cragg (7) - (9)

maximum likelihood estimates can be obtained via probit and

truncated -normal  e s t imat ion .  Shou ld  the  t es t  f a i l  t o  r e j e c t  the  nu l l

hypothesis, however, the analyst is then spared the effort and expense of

estimating the unrestricted Cragg model. However, it is not always the

case that the Tobit is computationally less burdensome than the Cragg

alternative in which instances the appeal  of  the LM test  is  somewhat

diminished. We propose here a Wald test for the Tobit parameter

restrictions considered by Lin and Schmidt that might be considered

attractive when the Cragg model is computationally preferred to the Tobit

Some recent experience has found the Tobit model in several empirical

appl icat ions to  be consistently  re jected in favor  of  Cragg ’s  alternative

based on the Lagrange mult ipl ier  test  cr iterion.  Should these speci f ic

results  general ize ,  e f f ic ient  est imates  of  the parameters  of  the Cragg

model are likely to be desired by researchers otherwise contemplating the
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Tobit approach. The appeal of the Wald test, then, is that since only the

estimates of the parameters of the unrestricted model are required, maximum

likelihood estimates of the Cragg model are available immediately and the

Tobit model need not be estimated. Regardless of whether the Wald test

suggests rejection of the Tobit restrictions, a model with a necessarily

higher l ikel ihood than the Tobit  wil l  have been est imated in the f irst

instance. It should be noted that the Wald test is in a sense a mirror

image of the Lagrange multiplier test in that the former relies solely on.

ML estimation of the unrestricted (here, Cragg) model while the latter is

based exclusively on the ML parameter estimates of the restricted (here,

Tob i t )  spec i f i ca t i on .  The  two  t es t  s ta t i s t i c s ,  however ,  have  the  same

asymptotic distribution (see Rao (1965) pp. 347-352).

Following Rao (1965) and Amemiya (1983), the Wald test statistic is

(38)

where J=J(e) is the estimated information matrix, h=h(e) is the (kx1)

vector of nonlinear restrictions on the parameters of the form        and

is a (kxq) matrix of partial derivatives. All evaluations are

at which is the ML estimate of the parameters of the unrestricted

( h e r e ,  C r a g g )  m o d e l .  U n d e r  a p p r o p r i a t e  c o n d i t i o n s  ( s e e  R a o ) ,  W  i s

distributed asymptotically central ):’ with k degrees of freedom under the

null hypothesis that B1=6,/o.

In the Cragg specification, e=( E’ @;, a:’ and q=(2k+1). The,

parameter restrictions to be tested can be written as

(39)

Given this form for h, it follows that

(40)H = [  OIki-Ikj  &I:

J-1 can be estimated by the ML covariance matrix of the parameters of the
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Cragg model. Because of  the structure,  J ,  and therefore  J , are block-1

diagonal, viz.

( 4 1 )

so  that  the  submatr i ces  A  and  B  can  be  es t imated  separate ly  as  t h e

covariance matrices of the probit parameters B1 (A) and the

truncated-normal parameters

Thus, W can be calculated by evaluating (39), (40), and (41) at iNL

and using the formula (38). As mentioned above, under the hull hypothesis

that the restrictions hold, W is distributed asympotically central x2 w i t h

k degrees of freedom. Furthermore, W has the same asymptotic distribution

as the Lagrange multiplier test statistic proposed by LS, so preference for

o n e  t e s t  s t a t i s t i c  o v e r  t h e  o t h e r  w i l l  l i k e l y  d e p e n d  l a r g e l y  o n  t h e

relative ease of implementation.

Turning now to Heckman’s formulation, his two-equation model is seen

to  reduce to  the Tobit  model  as  fo l lows.  Recal l  that  the model  can be

written (with notational changes) as

(42)

is a latent variable, however, and only a discrete (0,1) sign indicator

o f  i t s  r e a l i z a t i o n is  avai lable . is observed only when

L e t t i n g  s1=!3,  and cil=ci2  ( i .e .  the error  structure is  univariate  rather

than bivariate), then the Heckman model is the standard Tobit model. The
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l o g i c  i s  t h a t  w h e n  t h e s e  r e s t r i c t i o n s  a r e  i m p o s e d  i n  t h e  H e c k m a n

two-equation model, the remaining single equation plays both the censoring

and the determination-of-intensity roles. Since the censoring occurs as a

result  o f a non-positive realization of the random variable Y
*
i2 ’ the Tobit

requirement that the quantity or intensity realization be confined to the

nonnegative orthant is automatically satisfied when the restriction 

i s  imposed .  In  genera l ,  however ,  the  Heckman

two-equation framework is  not  speci f ical ly  designed to model situations

where realizations of the dependent variable of interest are necessarily

nonnegative and are recorded for all individuals/observations, and where

Pr(yi=0) > 0. Heckman’s formulation has yifO except on a set of measure

zero. We turn now to an explanation of the fundamental differences between

the Heckman two-equation formulation and the two versions-of - interest  o f

the Cragg model.

The two-equation Heckman model describes two phenomenon, Y 
i1 and Y*

i2,

that are marginally distribute, respectively, as   ) and

NID(Xi6,,o:)  Co; is  usually  restricted = 1 for normalization when only the

s ign  o f  y12 i s  o b s e r v e d ) .  T h e  j o i n t  d i s t r i b u t i o n  i s  b i v a r i a t e

Xifj2, o:, of, PI, w h e r e  p i s  t h e  c o r r e l a t i o n  o f (E.
i1, E. ) ,i 2 (a,,/o,c,j,

which is in general nonzero. The important point is that these marginal

and joint distributions are unconditional. That is, for all i,  there exist

r e a l i z a t i o n s  (yi1, yr2) a l t h o u g h the real izat ions y i1 for some i will be

unavailable to the researcher. Casting the problem concretely in the area

where Heckman’s model has been most fruitfully applied, labor economics,

s h e d s  f u r t h e r  l i g h t  o n  t h e  s u b t l e t i e s  o f  h i s  m o d e l .  H e r e  w e  d e f i n e

y
i1 =log(Wi) and y12=log(Hi+l  ) , where A’- ,s wage earned in market work and<

Hi is hours of market work. Thus, is positive only if market hours are
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posit ive .  I t  is  posited that  the expected values  of  both Yi1 and Yi2 are

l inear functions of  personal  characterist ics  and other variables  so  that

the two-equation model  results .  However,  because we only  observe the

market ‘wage for those individuals actually participating in market work

(those for whom Hi>0) , some subset of observations will not have data on

the y i1 , There is a market wage determined for nonparticipants; whether or

not such individuals have knowledge o f their market wages is immaterial.

The relevant analytical fact is that such data are unavailable to the

researcher.

In this labor supply framework, it is apparent why the estimation

techniques developed for the two-equation Heckman model and discussed

earlier in this chapter have such appeal. The more immediate concern, of

course, is whet her such techniques are in fact appropriate to the

estimation requirements of the present analysis. In a nutshell, Heckman’s

model is one where there are two equations of interest, both holding for

a l l  i  uncond i t i ona l ly ,  and  where  ( except  when  res t r i c ted  so  as  t o  be

identical  to  a  Tobit  model )  the probabi l i ty  o f observing realizations of

the dependent variable equal zero is zero. Does such a formulation capture

t h e  e s s e n c e  o f  t h e   " c o r n e r  s o l u t i o n ”  p r o b l e m s  o f  t h e  p a r t i c i p a t i o n

decision?

I t  s e e m s  r a t h e r  a r t i f i c i a l  t o  c a s t  t h e  r e c r e a t i o n  p a r t i c i p a t i o n

funct i ons  in  such  a  f ramework .  I t  i s  no t  genera l ly  the  case  wi th  the

generation of participation data that we can posit the existence of some

latent variable such that data for the participation measure(s) of interest

are only avai lable  given a posit ive real ization of  the latent  variable .

Rather, the processes of interest here are represented more typically by

data  that  ind i ca te  the  rea l i za t i ons  o f  par t i c ipa t i on  dec i s i ons  f o r  a l l
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individuals ,  even though these real izations are quite  frequently  on the

boundary of the consumption set. We turn now to a discussion of how the

Cragg models differ in substance from the Heckman two-equation setup and

argue that the Cragg formulations are more suited than Heckman’s model to

the nature of a subset of our estimation requirements.

A l though  l ike  the  Heckman f o rmulat i on  in  be ing  a  " two -mode l ”

speci f icat ion, the fundamental point of departure for the Cragg technique

i s  that  one  o f  the  two  mode l s  i s  f o rmula ted  in  t e rms  o f  c ond i t i ona l

expectations. The conditions on which the expectations are taken are, as

described above, the outcomes of unconditional models, which are generally

stated as binary representations of latent random variables. Thus, in the

context of recreation par t i c ipat i on ,  there  i s  an  uncond i t i ona l  mode l

defined for all individuals determining the binary outcome (participate,

don ’t  part ic ipate) . Conditional on a “participate” outcome, the quantity

of  part ic ipation is  determined either  by a lognormal or truncated-normal

model. The unconditional likelihood for a representative participant is

then

density  (part ic ipation given part ic ipate)  *Pr (part ic ipate) ,  (43)

which is  equation (13)  as  speci f ied earl ier .  There is  no density  of  the

quantity of participation defined for nonparticipants, unlike Heckman’s

formulation that defines such a density for all individuals.

Deaton and Irish (DI) (1984) , in an. independent line of investigation,

have cast the Cragg (7)-(9) model in a two-equation Heckman formulation.

They indicate  that  a  posit ive  observation on the quantity  measure of

interest is made when, in the notation used earlier, both Yi1, and YT2 are

real ized as  posit ive ,  e lse  a  zero  or  a  nonpartic ipation results .  In two

cases, DI specify
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(44)

cast thusly, the Cragg (7)-(9) model can be viewed as a Heckman

two-equation model ,  but  with a  restr ict ion imposed that  is  absent  in

Heckman’s formulations. That is DI seem to have ignored one aspect of the

Cragg model that is key in differentiating it from Heckman’s specification,

v i z .  t h a t  yL2 >0 i s  b o t h  a  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  f o r  a

p o s i t i v e  r e a l i z a t i o n  o f  y i 1 t o  r e s u l t .  T h a t  i s ,  ?r(yi,>Olyr2>O)  = 1,

Pr(yi1 =01y12<O?  = 1. When, and only when the first hurdle is traversed is

there a positive amount of the activity undertaken. So DI’s statement that

positive realizations of both variables determines whether is observed

positive is somewhat misleading in that a positive realization of either

s u f f i c e s  t o  a s s u m e  t h e  p o s i t i v i t y  o f  t h e  o t h e r .  N e i t h e r  o f  C r a g g ' s

speci f icat ions,  then, is  real ly  in  the spir it  o f  the model  proposed by

Heckman except ,  o f  course,  when both the Cragg (7) - (9)  model  and the

Heckman two-equation formulation are restr icted such that  the Tobit

speci f icat ion results .

Owing to the subtleties of the arguments, it is likely that the above

discussion has provided somewhat less than a total clarification of all the

relevant issues. Some of these shortcomings are due to the fact that even

Central participants in the academic debates appear still unconvinced about

the  nature  o f  the  d i f f e rences  among  the  es t imat ion  t e chn iques .  For

example, as noted earlier Duan and coauthors (1983) have used the Cragg

(7)-(11) estimation technique to model individuals’ medical expenditures.

T h e  e x p e n d i t u r e  d e c i s i o n ,  i n  t h e  s p i r i t  o f  C r a g g ’ s  s p e c i f i c a t i o n ,  i s

statistically modeled as two separate processes. Model one determines the
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binary outcome of whether or not any expenditures will occur, and model two

determines the amount of expenditure (positive by definition) that results

condit ional  on there being some expenditure.  In this  paper,  Duan and

coauthors assert that the covariance between the error terms of the two

models is irrelevant insofar as construction of the likelihood function is

concerned.

Recently, however, Hay and Olsen (1984) have questioned the Duan and

coauthors method, stating that this approach “requires some fairly unusual

assumptions on the model joint error distribution and functional form (p.

279).” Moreover, Hay and Olsen go on to claim that the Duan and coauthors

formulation “can be interpreted as being nested in the more general sample

selection models (p.279)." Duan and coauthors respond that Hay and Olsen

“are incorrect in claiming that our models are nested within the sample

selection model." and that “the conditional specification in the multi-part

( i . e . ,  Duan  and  coauthors )  mode l  i s  p re fe rab le  t o  the  uncond i t i ona l

speci f icat ion in the select ion model  for  model ing actual  (v .  potential )

outcomes (p.283)."

As we argued earlier, the sample selection or Heckman approach Is

particularly fruit ful  when analyzing phenomena such as labor market

participation. Quoting Duan and coauthors:

For certain empirical problems such as labor force

p a r t i c i p a t i o n ,  t h e  p r i m a r y  g o a l  m i g h t  b e  t o  p r e d i c t  t h e

potential outcome instead of the actual outcome; therefore, an

unconditional specification such as the sample selection models

might be preferable. For the present application, however, the

g o a l  i s  t o  p r e d i c t  t h e  a c t u a l  e x p e n s e ,  n o t  t h e  p o t e n t i a l

expense; therefore, the unconditional equation... is of no
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direct interest , and  the  pre fe rence  f o r  the  uncond i t i ona l

specification in the other empirical problems does not apply to

the present application. (p. 286).

In any event, this  discussion demonstrates  that  there st i l l  exists

some  con fus ion  on  these  po in ts  in  the  pub l i shed  l i t e ra ture .  We  have

attempted to be as thorough as time and space permit in hope of emphasizing

o n e  e x t r e m e l y  i m p o r t a n t  m e s s a g e .  T h a t  i s ,  i t  i s  e s s e n t i a l  t h a t  t h e

researcher be in t imate ly  fami l iar  w i th  the  behav iora l  and  s ta t i s t i ca l

structure of the models of interest in order to avoid being swallowed by

the slippery quicksand we have described. The nature of participation

measures as  condit ional  or  uncondit ional  and the interpretation of  any

latent variables in the model must be quite clear before the correct

estimation technique can be selected. When, and only when, such issues are

in order is it possible to make sense of the estimated obtained and their

relevance to benefit estimation.

It seems that the logic of the participation decisions of interest in

this study is better captured in terms of Cragg’s specifications than in

the Heckman two-equation model although this question is obviously still

open to informed debate. The specification of the

magnitude-of -part ic ipation model  as  a  condit ional  model  is ,  however,

intuitively plausible, and Cragg’s formulations provide a natural vehicle

for translating such intuitive plausibility into an econometric framework.

POISSON-DISTRIBUTED PARTICIPATION DAYS

In modeling event counts (non-negative integer data) over some time

interval  ( t ,  t+dt) ,  the Poisson distr ibution is  commonly used.  Here,  a

random variable Yi follows the probability law
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(45)

I t  h a p p e n s  t h a t  t h e r e  e x i s t  r e c r e a t i o n a l  p a r t i c i p a t i o n  d a t a  o f

interest  that  are  recorded as  nonnegative integers ,  most  obviously  as

counts  of  days of  part ic ipation. For any individual, such measures can,

over a time interval (t, t+dt), say one year, assume only integer values in

{0 ,1 ,2 , . . . , 365 } . Because of the paucity of observations likely to be found

at the upper (365 day) limit, we ignore the fact that these measures obey

upper bounds and concentrate instead on the complications presented by the

large  number  o f  ind iv idua ls  who  in  a  typ i ca l  random sample  o f  the

population report zero days of participation in the relevant categories.

Analogous to the familiar normal distribution where for econometric

work one typical ly  speci f ies parameter of the Poisson

distribution can be reparameterized to admit the influence of

covariates. S i n c e  f o r  a l l  i , straightforward approach is to

assume X.1 = exp(XiB) and to estimate 6 by maximum likelihood (see Hausman,

Hall, Griliches (1984)) Hausman, Ostro, Wise (1983), Portney and Mullahy

(1984)). This is the approach adopted here for modeling the

participation-days outcomes.

One  drawback  o f  the  Po i s son  mode l  i s  the  res t r i c t i on  tha t  E(Yi)

= Var (Y i ) .  Should this restriction not in fact characterize the data, the
e

maximum likelihood estimates of the covariance matrix of B based on minus

the inverse of the estimated Hessian will be inconsistent and t-tests based

thereon would be misleading. Hausman, Ostro and Wise circumvent this

res t r i c t i on  by  a l l owing  f o r  an  overd i spers i on  parameter .  A  d i f f e rent

approach is used here, using an estimator of the covariance matrix that is
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r o b u s t  a g a i n s t  d e p a r t u r e s  f r o m  t h e  m e a n = v a r i a n c e  r e s t r i c t i o n ,  t h i s

procedure is described below.

Given T independent observations, the log-likelihood function of the

Poisson participation model can be written as

(46)

where exp is the observed participation day count, and C does

not depend on B. It can be shown that 1 is concave in B. The first-order

conditions for the maximization of 2 are

(47)

with the maximum guaranteed by the condition

(48)

negative definite.

The maximum likelihood estimates of i obtained by maximizing (46) are

consistent, but the estimate of the covariance matrix of  using
e

evaluated at GML will be inconsistent if the data are not in

fact generated by the specified Poisson distribution.

This  is  most  easi ly  seen as  fo l lows.  Note that  the model  can be

e q u i v a l e n t l y  c a s t  a s  a  n o n l i n e a r  l e a s t  s q u a r e s  r e g r e s s i o n ,  t h e  i - t h

observation being

(49)
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heteroscedastic .  I f  nonl inear weighted least  squares is  used with the

we ights  exp(-Xiii)  formed using consistent estimates of 6, and if the data

are  in  fac t  Po i s son  as  spec i f i ed ,  the  max imum l ike l ihood  cons i s tent
A

e s t imates  o f  6 and COY(~)  wil l  obtain.  (The consistency of  6Mi for 6 d o e s

n o t  d e p e n d  o n  t h e  w e i g h t i n g  s c h e m e . )  H o w e v e r ,  i f  t h e  d a t a  i s  n o t
6

Poisson-distributed, the estimate of cov(B) obtained in this manner will be

inconsistent and asymptotic t-tests based thereon will be misleading. The

case is  ful ly  analogous to  the est imation of  the heteroscedastic  l inear

model  which yields  inconsistent  covariance est imates (and,  therefore,

t - s t a t i s t i c s )  i f  t h e  h e t e r o s c e d a s t i c  n a t u r e  o f  t h e  e r r o r  s t r u c t u r e  i s

either ignored or incorrectly specified.

Royal1 (1984) has demonstrated a method whereby estimates of cov( 6;

robust against misspecification of the underlying distribution of the data

can be obtained for  various distr ibutions,  including the Poisson,  when

[-awa6aBq-’ e v a l u a t e d  a t  %lL f a i l s  t o  y i e ld  a  c ons i s tent  e s t imate  o f
A

A
cov( 6). Denot ing  I(6) as [-a2!L/aBaa’!,  Royall ’s suggestion is to estimate

cov(i) a s

(50)

w h e r e  .  i s  t h e  i - t h  o b s e r v a t i o n ’ s  c o n t r i b u t i o n  t o  t h e  l o g - l i k e l i h o o d
A

function and where all relevant evaluations in (50) are at BMLi

GEOMETRIC-DISTRIBUTED PARTICIPATION DAYS

One alternative to the Poisson model for the modeling of count data is

t h e  g e o m e t r i c  d i s t r i b u t i o n .  T h o u g h  s e e m i n g l y  n o t  a s  o f t e n  u s e d  b y

econometricians as the Poisson, the geometric is a logical choice should an
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alternative to the Poisson be desired. Furthermore, the basic geometric

specification does not suffer from the mean=variance restriction that is

implied in the basic Poisson model. As will be seen below, the variance of

a geometric-distributed discrete random variable is greater than its mean,

although the fact that the variance depends on the mean limits somewhat the

f lexibi l i ty  of  the distr ibution.

Our  desc r ip t i on  o f  the  proper t i e s  o f  the  geometr i c  d i s t r ibut i on

follows that of Johnson and Kotz (1969). First, it should be noted that

the geometric  is  a  special  case of  the negative binomial .  Discussion is

conf ined here to  the geometric because i t  is  computational ly  far  more

straightforward than is  the general  negative binomial .  The geometric

distribution is defined as follows:

(51)

= 0 ,  e lse

with P>0. It holds that E(X) = P and Var(X) = P(1+P). As in the

econometric  speci f icat ion of  the Poisson model considered earlier, one

allows the P to vary across observations as and again is

a sensible parameterization due to the required positivity of the

Given this, the likelihood function for T independent observations car.

be written as

with log equal to

(52)

(53)
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where is the observed count for the i-th observation. The ML estimate 6

sa t i s f i e s

The Hessian is

(54)

which  i s  seen  by  inspec t i on  t o  be  negat ive  de f in i t e .  Because  i t  i s  a

fairly uncluttered expression, estimation and inference can proceed using

-H as an estimate of the information matrix and as an estimate of

the covariance matrix. (It might also be noted that (55) bears a strong

resemblance t o  t h e  H e s s i a n  o f the  we l l -known b inary  l og i t  mode l . 5

Unfortunately, much like the Poisson specification, the covariance estimate

thus obtained is not robust to departures from the data being in fact

geometric. However, the methods proposed by Royal1 (1984) and described

for the Poisson model can be used for the geometric distribution also. As

the development is identical, the details are omitted.

MULTINOMIAL-DISTRIBUTED PARTICIPATION DAYS

One type of micro data of particular interest in recreation economics

is of the following nature. We observe over the course of sane fixed time

period (say one year) the number of times (say days) that an individual

p a r t i c i p a t e s  i n  ( k - 1 )  m u t u a l l y  e x c l u s i v e  r e c r e a t i o n  a c t i v i t i e s  a n d ,

therefore, the number of days on which no recreational activity was

undertaken which can be viewed as the k-th activity. To be concrete, the

annual recreation profile for some individual who has in his/her recreation
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poss ib i l i ty  Se t  three  ac t iv i t i e s  ( f i sh ing  day  (=F) ,  boat ing  day  (=B) ,

swimming day (=S)) and nonparticipation (=N=365-F-B-S) days might look like

F = 12

B = 17

S = 0

N = 336

We also presume that the profiles of M individuals are observed.

I n  t h e  a n a l y s i s  o f  s u c h  d a t a ,  i t  i s  h e l p f u l  t o  m a k e  t w o  ( f a i r l y

strong) assumptions:

(1)  the data characterizing the individuals ,  i .e ,  the independent

variables, are invariant over the fixed time period. That is, the

characterist ics  of  individual  i , are representative of i  for

the entire year;

and

(2 )  the  dec i s i on  to  par t i c ipate  in  any  one  ac t iv i ty  - -  inc lud ing

nonparticipation -- on any given day depends neither on what.

act ivit ies  have been undertaken on the previous days nor  or

expectations of  recreational  part ic ipation in future days.  That

is, the daily decisions are (statistically, at best) independent.

Note that both these assumptions are more or less questionable with.

(2) perhaps being the more restrictive assumption. However, we proceed

under the constraints that these assumptions impose.

Given observations on the type of  recreational  prof i les  described

above, and the assumptions there set forth, it is appropriate to view the

d a t a  c h a r a c t e r i z i n g  t h e  r e c r e a t i o n  p a r t i c i p a t i o n  o f  i n d i v i d u a l s  a s

real izations of  mult inomial  random variables  (see Morey (1981)  for  a
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related discussion) .  From discrete  stat ist ical  theory,  the mult inomial

distribution of a random variable with parameters can be

written

(56)

where T is  the number of  tr ials  (here days) ,  the are the number of

occurrences of the j-th outcome, and are the probabilities that the j-th

outcome will occur on a single trial.

To  ex tend  the  s ta t i s t i ca l  mode l  t o  the  re c rea t i on  par t i c ipa t i on

measure,  we consider each daily participation decision (where

“participation” now refers to participation in nonrecreational activities

also) as one trial from a multinomial distribution with individual-specific

parameter vector for the m-th individual Assuming Tm =

= T for all m, m’, we henceforth drop the subscripts on the T

parameters. The yearly profile, then, is the 365 (by assumption

independent) daily trials for each individual. The econometric objective

i s  t h e  e s t i m a t i o n  o f  t h e  P  ,  i . e .  e s t i m a t i o n  o f  t h e  p r o b a b i l i t i e s  o f
j
m

engaging in the k possible activities on a given day.

For computational simplicity, we proceed as follows. A logistic

distr ibution for  the dai ly  outcome probabi l i t ies  is  assumed.  Thus,  the

probability that the outcome is Z on any trial is

(57)

f o r  ZER-IF, B, S, N}. The logist ic  distr ibution assures that  for  al l  m
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the multinomial requirement (‘2 P. =1) is met.
jcQ Jm

Since the probabil i t ies  (57)  are unique only up to  a  di f ference in

p a r a m e t e r  v e c t o r s  (Bj-13~‘)’ s o m e  n o r m a l i z a t i o n  i s  r e q u i r e d .  T h e

normalization most convenient and easily interpreted is BN = 0, so that EP,

are interpreted as differences between the respective activity

parameter vectors and the nonparticipation parameter vector.

The object ive ,  then,  is  est imation of the parameter  vectors  6P, ec,

and B S
. This is, of course, fully analogous to the widely-used multinomial

l og i t  mode l  where  a  s ing le  outcome  f rom a  se t  o f  mutua l ly  exc lus ive

outcomes is considered. In fact, that case is merely a special case of the

present exposition for which Tm = 1 for all m.

Estimation is by means of maximum likelihood. Assuming the existence

of N independent profile draws from the population, the likelihood of the

data as a function of the parameters is

(58)

where the Pj are as defined in (57) and where R is the choice index
 m

set. In log form,

where C is a constant not depending on 6. Given the assumed logistic

(59)

probabilities, we have

(60)



4-45

Maximizing (45) is simpler than maximizing (43), and can be accomplished

with only a slight modification of most existing (single-trial) multinomial

logit programs. 6

GROUPED OR INTERVAL DATA - ESTIMATION UNDER THE NORMALITY ASSUMPTION

There are often institutional or other constraints in the sampling or

data-recording processes that have the effect of generating inexact data

f o r research purposes. A common case and one that  is  of  immediate

relevance insofar as the present empirical investigations are concerned is

the situation where continuous measures of interest, such as the amount of

t ime spent part ic ipating in sane recreational  act ivity ,  are  cast  in the

recorded micro  data as  grouped or  interval  data. We discussed above

strategies that might be considered when the outcomes are recorded as

“number of days” or “number of times,” i.e. where the data can be viewed as

r e a l i z a t i o n s  o f discrete s ta t i s t i ca l processes rather than as

discrete/ integer codings of fundamentally continuous processes. In this

section we concern ourselves with the situations where the underlying

processes are best viewed as continuous phenomena but where the vagaries of

either the sampling or data-coding procedures are such that only a finite

number of intervals which the continuous measure is defined are

determined and the only data available to the analyst are indicators of the

interval bounds in which the (unknown) continuous measure is realized. For

example, the latent continuous measure might be “time spent participating

in act ivity  x  over  t ime period y  (say t ) , ” but owing to whatever reasons,

a l l  one  knows  i s  whether  t=0 ,  tc(0,4  days] ,  tE(4 days, 8 days], or t~(8

days, 365 days)  ( for  y=one year) . The  purpose  o f  th i s  se c t i on  i s  t o

present an estimating technique designed to handle such situations.
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The method is based on the work of Rosett and Nelson (RN) (1975), who

developed what is known as the two-limit probit estimation technique, and

o f  S t e w a r t  ( 1 9 8 3 ) ,  w h o  g e n e r a l i z e d  t h e  R N  m e t h o d  t o  a c c o u n t  f o r

multi-interval data. We will, therefore, refer to the model expounded here

as the RNS method. We begin by positing the existence of

normally-distr ibuted random variables  Yr - NID(Xi 6, u2). The real izations

yr are unobserved, however. Only the knowledge that the realization yy is

an element of  some proper subset  of  R is  avai lable .  More formal1 y ,

partit ion R into s u b s e t s  Jk ,  s u c h  t h a t  U Jk=R, JkflJj=O,  +Ik,j. T h e

data  ava i lab le  t o  the  ana lys t  are :  k  ( such  that  y;sJ, ) ), i n f ( J k ) ,  a n d

sup( Jk) .7 Note that when P=2 this reduces to the binary probit model while

for P=3, the RN two-limit probit model emerges.

Following Stewart, we define the p-th interval by (A p-1 ' Ap), and set

Given  T  independent  observat i ons ,  the  l og - l ike l ihood

function of this model can be written

(61)

w h e r e  @Pi i ) = @CAP-XiG/a), Q b e i n g  t h e  c u m u l a t i v e  d i s t r i b u t i o n  o f  t h e

standard normal. Estimation is by maximum likelihood. The first-order

conditions for maximizing E, are

and (62)
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where 61 p(i) = ( A p  - Xi B/a)  (@( Ap-Xi B/c) ) , and @(c> is the standard normal

density (2Tr)-!exp(- .5cZ). Because the matrix of second derivatives of 9, is

fairly complicated, we have elected to use for optimization purposes the

method of Berndt, Hall, Hall, and Hausman (1974), which utilizes only the

f i r s t  d e r i v a t i v e  v e c t o r  ((ai/a6)  ', (ae/ao)  )  '. (Note that when P = 2, i.e.

when the model is binary probit, a parameter normalization is required.

T y p i c a l l y  o-1 i s  used . This reduces the number of first order conditions

from (m+1) to m, where m is the dimensionality of 6.) Stewart has shown

how iterative least squares can be used to obtain the ML estimate. The

reader is referred to his work for the details.

GROUPED-DEPENDENT VARIABLE ESTIMATION: SOME EXTENSIONS

As discussed earlier, Stewart (1983) has proposed several approaches

to parameter est imation in s ituations where the dependent variable  is

grouped. These are cases where the only available information on the

dependent variable is  of  which of  P mutually  exclusive and exhaustive

subintervals  of the r e a l  l i n e  i t  i s  a n  e l e m e n t . The main purpose of

Stewart’s paper is to suggest methods of consistent parameter estimation in

the grouped dependent variable (GDV) model that are computationally less

burdensome than are iterative maximum likelihood techniques. The intent of

this s e c t i o n  i s  t o propose extensions of the idea of GDV estimation in

several directions.

The strategy of  this  sect ion is  as  fo l lows. First, the GDV model is

discussed in the context of the censored- and truncated-normal models for

continuous dependent variables. The analogies are highlighted, and it is

shown that a form of misspecification that precludes consistent parameter

estimation in the censored-normal (Tobit) model might well plague GDV
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estimates in sane circumstances. An interpretation of and tests for an

obvious alternative specification in the spirit of Cragg’s (1971) hurdles

model are suggested.

Second, it is proposed that the GDV framework can, under suitable

circumstances, permit consistent parameter estimation when continuous

censored- or truncated-normal dependent variables are measured with error.

Stapleton and Young (1984) have demonstrated that, unlike the case of the

basic linear model, errors of measurement on censored or truncated

dependent variables  result  in  inconsistent  parameter  est imates when

estimation is by maximum likelihood. It  is  suggested below that  i f  the

errorless dependent variable can be reasonably assumed to occupy certain

intervals  with probabil i ty  one, consistent estimation is possible within

the GDV framework: This result is particularly important in the case where

the dependent variable is truncated-normal because easily-computable

consistent estimators based on expectation functions (see Stapleton and

Young (1984)), feasible in the censored-normal model, are more difficult to

implement in the truncated case. In this context, a Hausman (1978) test is

proposed for testing the errors-in-dependent-variable hypothesis.

We turn to a brief recapitulation of the basic elements of the GDV

model and its estimation by means of maximum likelihood. The presentation.

parallels closely that of Stewart’s Section 2.

We  assume  the  ex i s tence  o f  T independent drawings from random
*

variables Y - N(XiB,u2)  where Xi and Z’ are 1xk vectors.i
However, as

discussed above, the point realizations are unknown to the researcher. The

only information on the realizations is of which of P mutually exclusive

and exhaustive subintervals of the real line it is a member. Given (P+1)

constants t h e  P  i n t e r v a l s  a r e  d e f i n e d  b y  I ,  =  ( a 0 , a 1 ]
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For  no ta t i ona l  ease  we adopt  the  convent i on  q=p-1.

Letting $ and Q denote the standard normal  density  and distr ibution

functions, respectively, the i-th observation’s contribution to the sample

l ikel ihood is

(63)

supremum (infimum) of the interval of which y t is an

element. The interpretation of  (63)  is is  the probabi l i ty  that  a

standard normal v a r i a t e  i s  i n  t h e  i n t e r v a l The sample

log- l ikel ihood function,  then,  is

( 6 4 )

The maximum likelihood estimates are obtained via simultaneous solution of

the (k+1) equations (65) for (i, ;I:

(65)

(andwhere Q is the standard normal density evaluated at

$9 is the same density evaluated at (a - Xi6VUL Because the second
i q

i
derivatives are messy, optimization via the Berndt-Hall-Hall-Hausman method

of first derivatives is an appealing choice.
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The GDV model as defined above is described in a fairly general form

where it is assumed that the P intervals I
p

mutually exhaust the real line

This structure can be amended,

however, to allow for situations often interesting to economists. To this

end, two restricted versions of the above framework, which we term the

censored-GDV (CGDV) and truncated-GDV (TGDV) models, are proposed. The

censored v e r s i o n  i n f a c t  t u r n s  o u t to be (64), but is described

independently to facilitate discussion of and comparison with the truncated

speci f icat ion. In both cases d i s cuss ion  i s  con f ined  to  the  normal ly

distributed case although other options are certainly available.

The “difference” between the general specification (64) and the CGDV

formulation is  that  for  the CGDV model  there is  a  mass point  of  the

distribution at for the censored-from-below CGDV or at in

the censored-from-above version. That is, Pr(yieI,)  = Pr(yi = s u p ( I
1
) )  i n

the former case, Pr(y i ~1~) = Pr(yi  = i n f ( I p ) )  i n  t h e  l a t t e r  c a s e . The CGDV

model can thus be viewed as a Tobit model in which the noncensored

observations are grouped. The  l og - l ike l ihood  func t i on  i s  ident i ca l  t o

(64) ,  but can be written in a form more closely resembling the familiar

Tobit log-likelihood function as

(66)

where 2, and  L2, are  the index sets  for  the censored and noncensored

observations, respectively, and where c e n s o r i n g  f r o m  b e l o w  a t  ac i s

assumed.
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Since

(67)

where Aa = a - a
‘i qi

, (66) is seen to reduce to the standard Tobit model

when the lengths of the intervals become infinitesimally small and the

number of  intervals  goes to  inf inity . When structured thusly, the CGDV

model would be appropriate in situations where, for example, nonnegative

data on yii are grouped as {0}, (1,4], (4,8], (8,+=),  r epresent ing  perhaps

expenditures or hours of labor supplied. Note that the CGDV model is

analytically identical to the basic GDV model (64), so that the estimation

techniques suggested by Stewart can be utilized.

The TGDV model requires different treatment, however. Here, as in the

continuous truncated-normal model, there is no mass point of the density

like that occurring in the CGDV specification. Rather, there is assumed to

be a known point of either upper or lower truncation, a,, and we assumeI

Confining discussion to truncation from below, again

define P intervals now requiring The

truncation of the density necessitates an amendment to the log-likelihood

function (64) ,  viz .

(68)

The maximum likelihood estimates of (5, CJ) satisfy
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(69)

where eva luated  a t  (Xi0 - aT)/uf As is the case in

the CGDV model, e s t imat i on  based  on  f i r s t d e r i v a t i v e s  i s  a  s e n s i b l e

approach; The TGDV model arises in situations similar to those analyzed by

Stewart where, for example, earnings data are obtained for some sample in a

grouped manner, but only those reporting positive earnings are sampled.

The intervals might then be (0, 10], (10,20], . . . , (105, +=) .

Having formally juxtaposed the CGDV and TGDV models, we now discuss

how a form of misspecification that a r i s e s  i n the continuous

censored-normal model can also corrupt the CGDV model. One resolution of

this speci f icat ion problem r e s t s  o n the use of the TGDV model.

Speci f ical ly , we are concerned with the grouped data analog of the case

discussed by Cragg (1971) and Lin and Schmidt (1984). (With little loss of

general ity ,  we cons ider  the  censored - f rom-be low  spec i f i ca t i on  in  the

sequel.) The central question to be addressed is whether the statistical

models  for  the latent  random variables de termin ing  Pr(yi>ac) ( the

first-stage model) differ from the second-stage models for the conditional

densities f(yi |yi>ac) in the continuous case or Pr(yieIplyiLI,)  in the GDV

case. The continuous Tobit and the CGDV specifications tacitly assume that

these f irst - and second-stage models reduce to a single model determined by

the same parameterization of the mean and variance of  the latent  YI.
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However, as discussed in depth earlier, Lin and Schmidt (1984) have

p r e s e n t e d  c o g e n t  a r g u m e n t s  a g a i n s t  t h e  p l a u s i b i l i t y  o f  t h i s  t a c i t

assumption as it pertains to many phenomena of interest to econometric

modelers. Should the distribution determining the phenomenon Pr(yi>ac) in

fac t  be  parameter i zed  d i f f e rent ly  than  the  d i s t r ibut i on  f ( y i | y i > a c )  or

Pr(YidpjyiLI  I ) ,  then maximum likelihood estimation of the standard Tobit

o r , of  more immediate concern,  the CGDV model  wil l  general ly  yield

inconsistent estimates of the parameters of both the first- and

second-stage models since the log-likelihood function is misspecified.

In the continuous case when ac = 0, Cragg suggests two specifications

for the second-stage conditional density of the First is a lognormal

specification, where given yi>0, l o g Y i - N ( X i 6 , ,  a’). Second is a

truncated-normal model, where given yi>0, Yi-TN(Xi BZ, uz ;0, +=I. In both

cases ,  e s t imat i on  o f  the  f i r s t - s tage  mode l  f o r  Pr(yi>0) versus  Pr(yi(0)

is a standard binary probit model based on some latent random variable that

i s  d i s t r i b u t e d  N(X B1,l).i

A grouped-data analog of Cragg’s probit/truncated-normal model can be

defined and considered as a logical alternative to the CGDV specification.

Denoting til and ( ti2,  02> as the parameters of the probit first-stage and

cond i t i ona l  t runcated -normal  se cond -s tage  mode l s ,  r e spec t ive ly ,  the

log-likelihood function of the grouped-data Cragg specification (CRGDV) is

(70)



4-54

(71)

The maximum likelihood estimates of (B,, ti2, a) can be obtained by the two

stage method:

1 )  Prob i t  e s t imat i on  o f  !3, based  on  the terms in the f irst  square

brackets in (71);

2) TGDV estimation as described earlier based on the terms in the

second square brackets.

Furthermore, note that when B1 = 3,/u, ( 70 )  r educes  t o  the  l og - l ike l ihood

function of the CGDV model (66).

One can test for the appropriateness of the CRGDV model vis-a-vis the

CCDV specification in several ways. First is a likelihood ratio test based

on estimation of both speci f icat ions. Since the CGDV model imposes k

parameter restrictions of the form on the

model, t h e  s t a t i s t i c  -2 (  ‘lC,,,-a,,,,,) is distributed as asymptotically)

central  x2 with degrees of freedom k under the null hypothesis that CGDV is

the appropriate speci f icat ion. !S isZ the maximized log- l ikel ihood

function value under specification Z). Second, along the lines suggested

by Lin and Schmidt in the continuous dependent variable case, one can.

d e s i g n  a Lagrange multiplier t e s t  f o r  t h e appropriateness of the

restrictions implied by the CGDV specification. Because such a test relies

only on estimation of the restricted (CGDV) specification rather than of

both models, it is an appealing alternative when the CGDV model is easily

estimated. As the details of the derivation of this test statistic would
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parallel closely the Lin and Schmidt work, they are not sketched here.

Their test is in fact the limiting version of that suggested here as the

size of the intervals goes to zero and their number to infinity. Finally,

a  Wald test  analogous to  that  suggested earl ier  in the analysis  of  the

continuous version of the Cragg model can be easily constructed.

We turn now to a discussion that casts GDV estimation in an entirely

di f ferent  role : Here focus is on situations where point data of the latent

Y; v a r i a t e s  a r e  i n  f a c t  r e c o r d e d .  T h e  d a t a  m a y  b e  s u c h  t h a t  t h e s e

realizations are of a censored or truncated nature, but in the most general

of cases all points on the real  l ine are candidates. The problem of

interest here is  that  i t is possible that the data are recorded or measured

with error.

To summarize, the TGDV model has been proposed as a useful estimation

techn ique  bo th  when  the  uncond i t i ona l  d i s t r ibut i on  o f  the  dependent

variable is truncated and grouped in intervals and when the conditional

probabi l i ty  distr ibution of  grouped data is  truncated,  this  occurring in

o n e  i n s t a n c e  w h e n  c e r t a i n  r e s t r i c t i o n s  i m p l i e d  b y  t h e  G D V / C G D V

specification are untenable.

It  is  wel l  known that  i f  the independent variables  are measured

without error and the nature of the dependent variable is such that it is

bo th  rea l i zed  over  the  ent i re  rea l  l ine  and  that  measurement  e r rors

therewith associated are stochastic, additive, and have null expectation,

then least squares provides consistent parameter estimates. The reason of

course is that the additive measurement errors on the serve only to

change the variance of  the addit ive model  error ,  leaving unaffected al l

requisite conditions for consistent estimation.
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However, Stapleton and Young (SY) (1984) have demonstrated that when

the dependent variable  is  not  real ized over  the entire  real  l ine,  but  is

rather  of a censored or truncated nature, maximum likelihood estimation

yields inconsistent parameter estimates when the dependent variable is

measured with error: The version of the SY model we consider is

(72)

(73)

(74)

(75)

Define the censored-SY (CSY) model as that resulting when the are

recorded for ail i and the truncatec-ST (TSY) model as that resulting when

on ly  the  pos i t i ve are used. The T
Y.i a re  the  t rue but unobserved

posit ive-censored real izat ions of  the Y*. The indicators are assumed:

available; these give information about the underlying structure of the

latent errorless classification mechanism. That is, assuming all recorded

measurements of y.i are nonnegative, we know when yi=0 because  versus

w h e n  yi=0 because yy>O and vi<-yy An example of this type of scheme is

where it is known with certainty whether or not a person participated in

t h e  l a b o r  f o r c e  a t  t i m e  t ,  b u t  t h e  n u m b e r  o f  h o u r s  o f
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participation--necessarily recorded as nonnegative--is possibly measured

with error. Cast thusly, it is probably true that the incidence of similar

phenomena in other areas of microdata analysis is significant.

SY have shown that although maximum likelihood estimation of either

the censored model based on all observations or the truncated model based

on ly  on  the  pos i t i ve yields inconsistent parameter estimates, it is

possible in the censored data case to obtain consistent parameter estimates

v i a  a  v a r i e t y  o f  t w o - s t e p  t e c h n i q u e s .  I n  i t s  m o s t  f a m i l i a r  f o r m ,

associated with Heckman’s work, a first-stage binary probit model on the

is estimated. The results from this are used to construct estimates of

$(Xi8/o)  and @(XiG/a) which in turn are used to construct the expectation

function (EF) of

(76)

or the conditional expectation function (CEF) of yi

(77)

Assuming E(vi 1~;) =0,, SY demonstrate that least-squares estimation of (6, c)

in (76), (77), or in several other possible formulations yields consistent

estimates.

When the data are truncated rather than censored, OLS estimation via

the EF or CEF methods proposed by SY is no longer feasible. Consistent

est imates  o f  Qi and   cannot be obtained by probit since di = 0 Vi in the

truncated case. Thus the EF and CEF cannot be estimated by OLS (see

Maddala (1983, p. 167)) SY do propose a truncated nonlinear least squares
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method for obtaining consistent estimates based only on positive Such

a technique is  highly nonlinear, however, and  po tent ia l l y  d i f f i cu l t  t o

estimate.

Given certain assumptions about the nature of the measurement errors,

we now show how the parameters of both the TSY and CSY models can be

estimated by maximum likelihood GDV methods. The argument is as follows.

The source of the inconsistency of the maximum likelihood estimates of the

TSY and CSY models is the measurement error on the yy: The likelihood

function formulated on the assumption that the observed yi are measured

without  error i s  t h e r e f o r e  b a s e d  o n  i n c o r r e c t  c o n t r i b u t i o n s  o f  e a c h

observation to the total likelihood when measurement errors are present,

maximum likelihood thus resulting in inconsistent parameter estimates.

(The appendix of SY gives a detailed proof of the inconsistency of maximum

likel ihood. )

Consider now the possibility that the measurement error structure is

such that there exist known nonnegative scalars CLi and CUi such that

(78)

where Ui = CU i - y i ,  Li = CLi-yi ,  a n d  G(vi ) is the distribution function of

the measurement errors v
i . We allow for the possibility that there exist

CLl>CLi, CUi<CUi  such that

(79)

U; = cu;-yi, L;= CL;-yi, i . e .  CLi and CUi are not necessarily the inf and

sup of the support of the density g(v . Although the requirement that CLii
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and CUi are known is somewhat restrictive and does not admit certain forms

for the density g ( v t ) ,, it is essential to the following argument. To make

the argument nontrivial, we  assume  that  the  in terva l s  (CLi,CUi) d i f f e r

across i and that there exist i, j  such that CUi f CUj for some i, j and CLi

f CLj f o r  some  (poss ib ly  o ther )  i , j , this second requirement necessary to

assure the boundedness of the likelihood function. Define I ii = (CLi,CU ),i

so it is assumed that Pr(ylrIilyisIi)  = 1. Heuristically, this means that

the data and measurement error structure are such that it can be said that

given yi , yt falls between CL and CUi with certainty, i .e .  the probabi l i ty

o f “misc lass i fy ing”  yl is zero. The plausibility of this assumption will of

course differ across empirical applications.

Given the above assumptions on the measurement error structure, it may

be demonstrated that maximum likelihood estimation of either the CSY or TSY

models via CGDV or TGDV techniques is a feasible approach to consistent

parameter estimation when measurement errors may be present. Defining the

interva l s  (CLi,CUi) analogous to  (a
q
i

, 
ap

i
) above, but no longer imposing

the restriction that these intervals be established ex ante, estimation can

proceed in the manner of equations (63)-(65), with now

(80)

(81)

The maximum likelihood estimates derived by maximizing (81), given the

a s s u m p t i o n  t h a t  t h e  m i s c l a s s i f i c a t i o n  p r o b a b i l i t i e s  a r e  z e r o ,  a r e

consistent, the argument following exactly that for the CGDV and TGDV

models described earlier.
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There is, o f  course, a  tradeof f  o f  sorts  involved here . The larger

the i n t e r v a l s  (CLi,CUi), t h e  s m a l l e r  w i l l  b e  t h e  m i s c l a s s i f i c a t i o n

probabi l i t ies ,  in  general . However, the larger  the intervals ,  the less

efficient will be the parameter estimates as information about the actual

magnitudes of  the yl is  lost .  Note  that  when no measurement error  is

present, consistent  est imates st i l l  obtain,  but  are  not  least-variance.

Because the consistency properties of estimating the CSY or TS models via

GDV methods rely on zero misclassification probabilities, the efficiency

tradeoffs are probably worthwhile in many circumstances. This approach is

particularly promising in the TSY model given that SY have demonstrated an

array of computationally simple methods for estimating the CSY model but

only one method for  est imating the TSY model ,  this  being potential ly

burdensome to estimate.

An outgrowth of  the preceeding discussion,  and indeed of  the SY

discussion as wel l , is that a straightforward test for the measurement

error problem is available. Given that under the null hypothesis of no

measurement error, maximum likelihood estimation of either the CSY or TSY

models yields cons i s tent  and  e f f i c i ent parameter estimates; that such

estimates are in general inconsistent in the presence of measurement error;

and that  regardless  of the presence of measurement error, there  exist

estimators that are consistent but inefficient, then a Hausman (1978) test

is suggested. These consistent-inefficient estimators, of course, are the

EF or CEF estimators suggested by SY and, given the appropriate assumptions

on the measurement error structure, the CGDV/TGDV estimators suggested

above. The form of the Hausman test is

(82)
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where under Ho: no measurement error, B1 i s  the  cons i s tent - ine f f i c i ent

estimate of B, i,, is the efficient maximum likelihood estimate, and il and

iO are the corresponding estimates of the covariance matrices. When the EF

or CEF estimators are used for i 1, the appropriate formulae for il can be

found in SY; when the CGDV or TGDV approach is taken, the appropriate

submatrix of the inverse of

(83)

can be used to estimate ill where 8 = (B', o)', Li is  as  def ined in (80) ,

and evaluation of B is at the CGDV or TGDV estimates. Under the null

hypothesis of no measurement error, m is distributed asymptotically central

x2 with k degrees of freedom.

Furthermore, note that the version of the Hausman test proposed by

Nelson (1981), whose extension to the truncated normal case was discussed

above, can also be used as a test of the measurement error hypothesis.

Since both the censored and truncated versions of the Nelson test rely on

e s t i m a t e s  o f  E ( X ' Y )  t o  f o r m  t h e  t e s t  s t a t i s t i c ,  a n d  s i n c e  N e l s o n ’ s

cons i s tent - ine f f i c i ent  moment  es t imator  o f  th i s  expec ta t i on  remains

consistent given null expectation of the measurement errors, then his test

qualifies as a Hausman test for the measurement error problem. However,

because  the  Ne l son  t e s t s  a re  appropr ia te  t e s t s  f o r  a  w ide  var i e ty  o f

problems (heteroscedastic i ty ,  nonnormality ,  to  name two) ,  a  s ignif icant

Ne lson  s ta t i s t i c  w i l l  no t  necessar i l y  shed  l i ght  on  the  nature  o f  the

problem it has diagnosed.
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PREDICTION IN ESTIMATED PARTICIPATION MODELS

The preceeding sections have surveyed some econometric methods for

est imating recreational  part ic ipation models . Because there exists  a

variety of structural or behavioral assumptions about the mechanisms that

give r ise  to  the stat ist ical  formulations, as  wel l  as  a  variety of  data

collection methods and coding configurations, i t  has been necessary to

consider a set of possible approaches to estimation strategy. The models

cons idered  are  la rge ly  o f  a  non -nes ted  nature ( i . e . Model A cannot

generally be obtained as a restricted version of Model B and vice-versa).

And the techniques for non-nested model evaluation are largely undeveloped

in situations where the model error structures are nonnormal. Thus, it is

necessary that comparisons be made in terms of alternative predictions

across specifications if policy is to be guided sensibly.

While the goal in much of this chapter has been the goal to obtain

consistent parameter estimates of participation models, specified, in and

o f themselves, consistently estimated models are nothing more than

aesthetically-pleasing curiosa. Their raison d’etre insofar as the present

analysis  is  concerned is of  course to  serve as  tools  for  predict ing the

impacts of changes in water quality or recreation participation.

In the practical realm of policy analysis, Intriligator (1983) refers

to such prediction methods as the simulation approach to policy evaluation

and summarizes the approach as follows:

This approach uses the est imated reduced form to  determine

alternative combinations of policy variables and endogenous

variables for a given set of possible policies...

The policymaker w o u l d  p r o v i d e  t h e  m o d e l  b u i l d e r  w i t h  t h e

a l te rnat ive  po l i c i e s , and the model builder would, in turn,
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provide the decision maker with their consequences for  the

endogenous variables. The policymaker would then choose a

desired policy and its outcome...

This approach requires that the policymaker formulate an explicit

set  o f  pol icy  alternatives  and that  an est imated econometric

m o d e l  i n c o r p o r a t i n g  t h e  a p p r o p r i a t e  p o l i c y  v a r i a b l e s  b e

available. Simulation, based in part on communication between

policymaker and model builder, represents a valuable approach to

policy evaluation that could be used in any policy area in which

there exists a relevant estimated econometric model.

(Intri l igator  (1983) ,  p .  214) .

We  th ink  i t  necessary  t o  c l o se this  chapter  with a discussion of

pred i c t i on  in  the context  of  the econometric  models  discussed earl ier

because the relevant prediction formulae and methods vary considerably

across the model specifications. Though the results presented below are

hardly profound, their presentation merits the space used basically because

there exists  to  our knowledge no unif ied treatment of  predict ion that

includes the several econometric models proposed above. Such a unified

t r e a t m e n t  s h o u l d  b e  o f  i n t e r e s t  t o  t h e  p o l i c y  a n a l y s t  i n t e r e s t e d  i n

juxtaposing the estimated policy outcomes from the various econometric

specifications, which are, as noted above, largely nonnested.

Pred i c t i on  in  the  contex t  o f the econometric participation models

discussed in this chapter is the process whereby one assesses the change in

the estimated response with respect to a change in some control variable,

specifically water quality. The statistical models estimated are typically

o f  a  n a t u r e  f o r  w h i c h  i t  i s  p o s s i b l e  t o describe  one or  more of  the

following:
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a) the expectation of the dependent variable, E(Yi)=f(Xi6);

b) the conditional expectation of the dependent variable, e.g.,

c )  the probabi l i ty  that  the dependent variable  equals  sane value,

e . g . , Pr(Yi=yi)=h(Xi6) (this description pertains m a i n l y  t o

qualitative dependent variable models such as the multinomial model

described earlier).

For example, the objective of the econometric estimation of some model
A e.

might  be to  obtain an est imate of  E(Yi)  as Yi=f(XiS). Prediction, then,
A

would be the process whereby one estimates 3E(Yi)/axik by 2Yi/axik,  withA

X ik some control variable specific to i.  In the subsequent discussion, we

take the term “predict ion" generally to mean the expected change in y

attr ibutable  to  a  hypothetical  change in sane control  variable  X,  i .e . ,

auyvax. Frequently, the est imated changes are couched in terms of

elasticities in order to abstract from magnitudinal considerations; here

one might use estimates of alOgwi )/‘;logx ik . We turn now to an analysisI

of how prediction

discussed in this

The ordinary

point. Although

of the above nature would apply to the econometric models

chapter.

least squares (OLS) speci f icat ion is an obvious starting

we have seen how OLS will generally be an inappropriate

analytical tool given the nature of most participation data likely to be

encountered, the analytics of prediction in the OLS model are quite simple

and serve to motivate the remainder of the discussion.

Recall that the basic linear model can be written as

(84)

If we have E(ei)=O,  then E(Yi)=Xi6. OLS  es t imates  6 by 6 = (X 'X ) -1X 'y  2. :
A a

estimates E(Yi) b y  Gi=Xi6. Note  that  Z;Y ) =E(1 Xi6)=Xi(XfX)-!x’(X6+Z(~)‘=9  :
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so that in the OLS model is an unbiased estimator of E(Yi) given

the ideal conditions described earlier in this chapter. Prediction of the

expected change in yi for a change in Xikk in this case is simply 3Yi/3xik  =

ik’ or the k-th slope estimate. In the linear model, it is fairly standard

prac t i ce  t o  use  the  e las t i c i ty  alogYi/alogxik and evaluate the elasticity

at the means of the observed where the overbar

denotes a sample mean.

The Tobit model lends itself to description by either its expectation

function or its conditional expectation function. Respectively, these are

(85)

and

(86)

where 9; and 0; are  evaluated at  Xi B/o. Following Maddala (1983), the-L I

respective predictions are

and

In elasticity form, these partial derivatives are

a n d  xik/E(Yi |yi > 0 ) ) ,  r e spec t ive ly . Evaluation,

(87)

(88)

multiplied by xi k/E(Y 1 ) ,

again, might be at the

sample means of the yi and Xi. However, note that in this specification,

as in other nonlinear-in-parameters speci f icat ions, the evaluated

predictions wi l l  t yp i ca l ly  depend  not o n l y  o n  t h e  s e l e c t e d  y  a n d  xk

evaluation points, but  also  on the other  (noncontrol )  e lements  of  the

X-vectors. In the general nonlinear case, evaluation at the means of the

does not generate the same prediction as is yielded by calculating the

mean of the estimated individual predictions. This is merely a corollary

of  a  general  property of  nonlinear functions where
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Thus, another obvious method of  evaluation would be to  calculate  the

prediction for each individual in the sample and average the individual

predictions. Such a strategy might be valuable when contemplated policy

measures take the form of, say, an x-percent change in the control variable

of each individual from that individual’ s prevailing or pre-policy level.

In the probit/truncated-normal version of the Cragg estimator (the

Cragg equations (7) and (9)) the expectation function can be written as

(89)

(90)

and

where  9.
ip

a n d  9. are the
1P

standard normal  density and distr ibution

functions evaluated at Xi BP/u p (p=1 ,2 ) . (Reca l l  that   is normalized =

1 ) . In this  speci f icat ion, .  the formula for  aE(Yilyi>O)/axik  is  identical

to that for the Tobit specification, equation (86) above. The formula for

the unconditional version is

(91)

where Note that when til = B, and 0, =

u2, i .e.,  when the Tobit restrictions are imposed on this version of the

Cragg model, (91) reduces to the far less-complicated expression (87).

The second version of the Cragg model considered earlier is that where

the second-stage conditional density is lognormal, with log Yi-N(XiB,,o$)

conditional on yi>0. Again defining the appropriate expectation functions

yields
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(96)

(92)

and

(93)

where we have used the well-known property of lognormal densities that

where the log of a lognormally-distributed random variable has mean v and

variance e2, then the expected value of the random variable is exp(u +

.5eZ) (See Johnson and Kotz (1970, Chapter 14) for further details on the

properties of the lognormal). The relevant partial derivatives are

and

In al l

(94)

(95)

cases, e las t i c i ty forms are c a l c u l a t e d  b y  t h e appropriate

m u l t i p l i c a t i o n  b y  e i t h e r  x i k ( E ( Y i ) ) - 1  or x ik(E(Yi|yi>0)  )-1 of  the part ial

derivative formulae derived above.

The Heckman two-equation model, r e c a l l ,  i s c a s t  i n t e r m s  o f

unconditional densities of the random variables Y i1 and Yt:12' Thus, tne

unconditional expectation of Y i 1 is a linear function of parameters,

with

(97)

If the moment of interest is the conditional expectation of Yi1 given yi2=1

( in the notation of  equation (34)) , then we have from equations (35) and

(36)

(98)

w h e r e  $i2 and Qi2 a r e  t h e  s t a n d a r d  n o r m a l  d e n s i t y  a n d  d i s t r i b u t i o n
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f u n c t i o n s  e v a l u a t e d  a t  (Xi B2/ a,). Here,

( 9 9 )

where now we define X
i 2

= $i2/(l-@i2)  a n d  Zi2 = XiB,/a,.

T h e  d e r i v a t i o n s  o f  t h e  p r e d i c t i o n formulae  for  the  Po isson  model  are

stra ight forward . R e c a l l  f r o m  e q u a t i o n  ( 4 9 )  t h a t  t h e  e x p e c t a t i o n  f u n c t i o n

f o r  t h e  P o i s s o n  s p e c i f i c a t i o n  i s

(100)

( N o t e  t h a t  t h e  P o i s s o n  s p e c i f i c a t i o n  d i f f e r s  f r o m  t h e  o t h e r s  d i s c u s s e d

not be ena b o v e  i n that the c o n d i t i o n a l expectat ion f u n c t i o n  h a s

cons idered . 8)

Thus we have

o r ,  i n  e l a s t i c i t y  f o r m ,

The  formulae  for  the  geometr ic  spec i f i cat ion ,  wi th

(101)

(102)

a r e  a l s o

(101)  and  (102) .

Recall  for the Stewart or grouped-dependent variable model that in any

i n t e r v a l  (a
p-1

, a p )  o n e  h a s  f o r  a  c o n d i t i o n a l  e x p e c t a t i o n

(103)

where Zp=( a p - X i  B)/ u. T h e  p r o b a b i l i t y  t h a t  t h e  r a n d o m  v a r i a b l e  Yi i s

r e a l i z e d  i n i s  o f  c o u r s e  1: .Ipi-S(Zp-,) ) . Therefore, the

uncondi t ional  expectat ion  funct ion  i s

(104)
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T h e  s t r o n g  r e s e m b l a n c e  b e t w e e n (104) and (85) is clearly more than

co inc idence , such  o f  course  owing  to  the  foundat ions  o f  both  the  Tobi t  and

the  GDV est imators  in  normal ly -d is tr ibuted  latent  var iab les .

Because  the  ca lculat ions  are  a  b i t  messy , the  predic t ion  formulae  are

d e r i v e d  o n l y  f o r  t h e  e x p e c t a t i o n  f u n c t i o n ; t h e  c o n d i t i o n a l  e x p e c t a t i o n

var iant  i s  analogous ly  der ived . We have from (104)

where 9p=O(Zp)  a n d  @p=@(  zp) . T h e  e l a s t i c i t y

the  appropr iate  mult ip l i cat ion .

(105)

v e r s i o n  i s  a g a i n  d e r i v e d  b y

In  a l l  the  above  formulat ions ,  the  dependent  var iab les  or  the ir  la tent

b a s e s  w e r e  o f  a  q u a n t i t a t i v e  n a t u r e , t h u s  a l l o w i n g  d i r e c t  q u a n t i t a t i v e

r e p r e s e n t a t i o n  o f  t h e  m o m e n t s  o r  c o n d i t i o n a l  m o m e n t s  o f  i n t e r e s t .  T h e

prediction strategy when the dependent v a r i a b l e  i s  q u a l i t a t i v e  r a t h e r  t h a n

q u a n t i t a t i v e  i s somewhat  d i f ferent . H o w e v e r ,  i n t h e  o n e  q u a l i t a t i v e

d e p e n d e n t  v a r i a b l e  m o d e l  d i s c u s s e d  i n  t h i s  c h a p t e r - - t h e  m u l t i n o m i a l - - t h e

nature  o f t h e  d e p e n d e n t  v a r i a b l e  i s  s u c h  t h a t  a  f a i r l y  d i r e c t  t r a n s l a t i o n

f r o m  t h e  q u a l i t a t i v e  o u t c o m e  t o  a  q u a n t i t a t i v e  p r e d i c t i o n  i s  p o s s i b l e .  T h e

s t r a t e g y  i s  a s  f o l l o w s . R e c a l l  t h a t  t h e qual i tat ive  outcome measures  o f

interest  in  the  mult inomial  model  are  the p r o b a b i l i t i e s  o f  e n g a g i n g  i n  a n y

o f  a  s e t  o f  a c t i v i t i e s  o n  a  g i v e n  d a y . T o  t r a n s l a t e  t h e s e  p r o b a b i l i t i e s

i n t o  q u a n t i t a t i v e  p a r t i c i p a t i o n  m e a s u r e s  f o r  s o m e  t i m e  i n t e r v a l  ( a  y e a r ,

e . g . , ) ,  o n e  s i m p l y  s u m s  t h e  a c t i v i t y - s p e c i f i c  d a y  p r o b a b i l i t i e s  o v e r  t h e

year. I f  t h e  d a y  p a r t i c i p a t i o n  p r o b a b i l i t i e s  a r e
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.02

.01

.05

Nonrecreation . 9 2 ,

Then the annual quantitative participation measures are

Fish .02(365) = 7.12 days

Boat .01 (365) = 3.56 days

Swim .05(365) = 17.80 days

Nonrecreation .92(365) = 327.52 days.

T h e  p r e d i c t i o n  s t r a t e g y ,  t h e r e f o r e , i s  t o  a s s e s s  t h e  r e s p o n s i v e n e s s  o f  t h e

d a i l y  a c t i v i t y - s p e c i f i c  p r o b a b i l i t i e s  t o  c h a n g e s  i n  t h e  c o n t r o l  v a r i a b l e ,

assess t h e  e x  p o s t magnitude  o f a n n u a l  p a r t i c i p a t i o n  i n  t h e  v a r i o u s

a c t i v i t i e s , a n d  c o m p a r e  t h e s e  p o s t - p o l i c y  m a g n i t u d e s  t o  t h o s e  t h a t  w e r e

e s t i m a t e d  t o  p r e v a i l  i n  t h e  p r e - p o l i c y  p e r i o d .

The p r e d i c t i o n  e q u a t i o n s  a r e  b a s e d  o n  t h e  p r o b a b i l i t i e s  d e f i n e d  i n

( 5 7 ) . For  indiv idual  i  and  cho ice  Z ,  one  has

w h e r e  R i s  the  cho ice  index  set .

Therefore,

T h e  e l a s t i c i t y  f o r m u l a t i o n  i s

(106)

(107)

(108)

CONCLUDING REMARKS

T h i s  c h a p t e r  h a s  d i s c u s s e d  a  v a r i e t y  o f  a p p r o a c h e s  t o  e c o n o m e t r i c

e s t i m a t i o n  o f  r e c r e a t i o n  p a r t i c i p a t i o n  m o d e l s . The  menu o f  est imators
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d i s c u s s e d  w h i l e  b r o a d , h a r d l y  e x h a u s t s  t h e  s e t  o f  c a n d i d a t e s  t h a t  a r e

a v a i l a b l e . T h e  i n t e n t i o n  h e r e  h a s  b e e n  t o  b e  s u g g e s t i v e  o f  g e n e r a l

a p p r o a c h e s  t o  e s t i m a t i o n  t h a t  m i g h t  b e  c o n s i d e r e d  g i v e n  h e t e r o g e n e o u s

p a r t i c i p a t i o n  d a t a  s t r u c t u r e s .

I t m u s t  b e  s t r e s s e d  t h a t  b e c a u s e  t h e s e  m e t h o d s  g e n e r a l l y  r e q u i r e

i t e r a t i v e  s o l u t i o n  a l g o r i t h m s , they are expensive to implement. Moreover,

as the subsequent chapters show, the  qual i ty  o f  the  part i c ipat ion  and  water

qual i ty  data  on  hand i s  suspect . There fore , we  dec ided  that  the  potent ia l

s t a t i s t i c a l enhancements a t t r i b u t a b l e  t o the use of these more

s o p h i s t i c a t e d  e s t i m a t i o n  t e c h n i q u e s  w o u l d  b e  l o s t  i n  t h e  n o i s e  a n d ,  a s

such ,  probably  not  worth  the ir  added  costs . Accordingly , in  the  empir ica l

work  to  fo l low,  more  main  s tream techniques  are  ut i l i zed .
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NOTES

1 . T h e  d e r i v a t i o n  o f  ( 2 )  i s  s t r a i g h t f o r w a r d . G i v e n  X-N(u, a’), t h e n  w e

wish to show:

S e t t i n g  x  =  y: a n d  u=xi !3 y i e l d s  ( 2 ) .

2. Reca l l  that  the  b inomal  pr int  model is the common designation models

o f  b i n a r y  ( 0 , 1 )  o u t c o m e s  t h a t  a r e  g e n e r a t e d  b y  N(Xta, 1) v a r i a t e s .  S e e

Maddala (1983, chapter 2 )  f o r  a d d i t i o n a l  d i s c u s s i o n .

3. T h e  D u a n ,  e t .  a l .  m o d e l  l i k e l i h o o d  f u n c t i o n  ( t h e i r  e q .  3 . 7 )  i s

i n c o r r e c t . T h e y  o m i t  t h e  m u l t i p l i c a t i v e  t e r m  ( 1 / y i 2 )  i n  t h e  d e n s i t y  f o r

t h e  p o s i t i v e  t e r m s , t h i s  a s  m e n t i o n e d  a b o v e  b e i n g  t h e  J a c o b i a n  o f  t h e

t r a n s f o r m a t i o n  f r o m  y i 2 ) .  C r a g g  c o r r e c t l y  i n c o r p o r a t e s  t h i s  i n  h i s  e q .

( 1 1 ) . T h e  v a l u e s  o f  t h e  p a r a m e t e r s t h a t  m a x i m i z e  t h e  l o g - l i k e l i h o o d

f u n c t i o n  d o  n o t  d e p e n d  o n  t h i s  t r a n s f o r m ,  a l t h o u g h  t h e  v a l u e  o f  t h e
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l o g - l i k e l i h o o d  f u n c t i o n  i t s e l f  d o e s ,  o f  c o u r s e ,  d e p e n d  o n  t h e  t r a n s f o r m .

4. In  the  Lagrange-mult ip l ier  hypothes is  test ing  approach ,  one  formulates

t h e  p r o b l e m  b y  c o n s i d e r i n g  t h e  m a x i m i z a t i o n  o f  t h e  l o g - l i k e l i h o o d  f u n c t i o n

a(e) s u b j e c t  t o  a  s e t  o f  ( p e r h a p s  n o n l i n e a r )  r e s t r i c t i o n s  o n  6 o f  t h e  f o r m

Thus, one can consider the Lagrangean function

a n d  m a x i m i z e  Q(6)  w.r . t . T h e  t e s t  r e l i e s  o n  t h e  i d e a  t h a t  w h e n  t h e
A

r e s t r i c t e d  e s t i m a t e i s  “ n e a r ” t h e  u n r e s t r i c t e d  M L  e s t i m a t e  8, the  vector

k(8) w i l l  a p p r o a c h  t h e  z e r o  v e c t o r . F u r t h e r  d i s c u s s i o n  i s  f o u n d  i n  t h e

excellent piece by Breusch and Pagan (1980).

5. T h e  r e s e m b l a n c e  i s  d u e  t o  t h e  f a c t  t h a t ,  g i v e n  t h e  Pi = exp(Xi6)

parameter izat ion , i f  t h e  g e o m e t r i c  s p e c i f i c a t i o n  i s  r e d u c e d  t o  t h e  b i n a r y

o u t c o m e s  Pr(ki=0) v e r s u s  P r ( ki =  1  o r  ki =  1  o r . . . ) ,  t h e n  t h e  b i n a r y  l o g i t

model  resul ts . T h i s  r e s u l t  i s  i n t e r e s t i n g  i n  t h a t  c o n s i s t e n t  e s t i m a t e s  o f

e i n  t h e  g e o m e t r i c  m o d e l  a s  s p e c i f i e d  c a n  b e  o b t a i n e d  v i a  a  b i n a r y  l o g i t

model. S u c h  e s t i m a t e s  a r e  i n e f f i c i e n t , however, a s  i n f o r m a t i o n  o n  t h e

m a g n i t u d e s  o f  t h e  ki 2 1  i s  d i s c a r d e d .

6. T h e  o n l y  d i f f e r e n c e ,  a s  i s  o b v i o u s  f r o m  i n s p e c t i o n  o f  ( 4 ) ,  i s  t h a t  i n

t h e  o n e - t r i a l  c a s e , f o r  a l l  m  w h i l e  i n  t h e  m u l t i p l e - t r i a l  c a s e

considered here Existing programs, then, are  modi f ied  as  to  the

n u m b e r  o f times the terms are summed in computing the

l o g - l i k e l i h o o d .

7. Inf and sup are the abbrev iat ions f o r infimum and supremum,

r e s p e c t i v e l y  t h e  g r e a t e s t  l o w e r  b o u n d and least upper bound of a set S if

t h e s e  b o u n d s  e x i s t . I f  S  h a s  a  m i n i m u m  ( r e s p .  m a x i m u m )  e l e m e n t ,  t h e n

i n f ( S )  =  m i n ( S )  ( r e s p .  s u p ( S )  =  m a x ( S ) .



4-74

8 . I t  would  be  poss ib le  to  de f ine  a  t runcated  vers ion  o f  the  Po isson  model

w e r e  o n l y  s t r i c t l y  p o s i t i v e  i n t e g e r  r e a l i z a t i o n s  w e r e  a d m i t t e d . Here one

would have

where (1 -exp(-Xi)  ) i s  t h e  t r u n c a t i o n  n o r m a l i z i n g  c o n s t a n t  e q u a l  t o

(1 - P r ( Y i = 0 ) ) . T h i s  c o u l d , t h e n ,  b e  c o n s i d e r e d  a  c o n d i t i o n a l  d i s t r i b u t i o n

f o r  t h e  yi*O. S o m e  o f  t h e  s a m e  q u e s t i o n s  a s  a r i s e  i n  t h e  L i n - S c h m i d t

c r i t i q u e  o f  t h e  T o b i t  m o d e l  a r e  p r e s e n t  i n  t h e  d i s c u s s i o n  o f  t h e  t r u n c a t e d

Poisson  formulat ion . s p e c i f i c a l l y , one might question whether the Poisson

binary p r o b a b i l i t i e s P r ( Y i = 0 ) and Pr(Yi=1 or Yi=2 or Yi=33 o r . . . )

( = 1 - P r ( Y i = 0 ) )  a r e  g o v e r n e d  b y  t h e  s a m e s t a t i s t i c a l  p r o c e s s  a s  a r e  t h e

c o n d i t i o n a l p r o b a b i l i t i e s Pr(Yi=y|y=1 o r  y = 2  o r . . . ) . B e c a u s e  s u c h

cons iderat ions  require  cons iderable  further  deve lopment ,  we  postpone  the ir

d i s c u s s i o n  f o r  f u t u r e  r e s e a r c h .
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